Discover EuroHPC


The European High Performance Computing Joint Undertaking (EuroHPC JU) is a legal and funding entity, created in 2018 and located in Luxembourg.

The EuroHPC Joint Undertaking allows the EU and EuroHPC participating countries to coordinate their efforts and pool their resources with the objective of deploying in Europe world-class exascale supercomputers, able to perform more than one trillion (1018operations per second and developing innovative supercomputing technologies and applications . By making Europe a world leader in high performance computing (HPC), the EuroHPC JU seeks to provide computing solutions, improving cooperation in advanced scientific research, boosting industrial competitiveness, and ensuring European technological and digital autonomy.

Currently, the Joint Undertaking is supporting the following activities:


Developing a world-class supercomputing infrastructure: procuring and deploying by 2021 in the EU three pre-exascale supercomputers (capable of at least 1017 calculations per second) and five petascale supercomputers (capable of at least 1015 calculations per second). These new machines will be located across the European Union and will be available to Europe's private and public users, scientific and industrial users everywhere in Europe. 

The three pre-exascale supercomputers will be located at the following supercomputing centres:

While the five petascale supercomputers will be located in the following supercomputing centres:

Supporting research and innovation activities: developing and maintaining an innovative European supercomputing ecosystem, stimulating a technology supply industry (from low-power processors to software and middleware, and their integration into supercomputing systems), and making supercomputing resources in many application areas available to a large number of public and private users, including small and medium-sized enterprises. 

Through its research and innovation agenda, the EuroHPC JU is also strengthening the European knowledge base in HPC technologies and bridging the digital skills gap, notably through the creation of a network of national HPC Competence Centres. The Competence Centres will act locally to ease access to European HPC opportunities in different industrial sectors, delivering tailored solutions for a wide variety of users.



The EuroHPC Joint Undertaking is composed of public and private members:

Public members:

  • the European Union (represented by the Commission),
  • Member States and Associated Countries that have chosen to become members of the Joint Undertaking: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Montenegro, the Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, and Turkey.

Private members:

euroHPC map


The EuroHPC Joint Undertaking is jointly funded by its public members with a current budget of around EUR 1.1 billion for the period 2019-2020.

Most of the funding comes from the current EU long-term budget, the Multiannual Financial Framework (MFF) with a contribution of EUR 536 million. This sum is expected to be matched by a similar amount from the participating countries. Private members will also provide additional contributions to the value of over EUR 420 million, through participation in the Joint Undertaking’s activities.

The Joint Undertaking provides financial support in the form of procurement or research and innovation grants to participants following open and competitive calls.

Next steps

HPC is one of the key digital topics where the EU's investment should significantly increase in the next MFF (2021-2027). For this next financial period, the Digital European Programme (DEP), Horizon Europe (H-E) and Connecting Europe Facility-2 (CEF-2) are the main EU funding programmes that could be used to finance the EuroHPC JU.

On 18 September 2020, the European Commission proposed a new Council regulation allowing the EuroHPC JU to continue the development of HPC in Europe for the next decade.

The new regulation aims at replacing the Council Regulation (EU) 2018/1488 establishing the EuroHPC JU. It sets out an ambitious mission to provide Europe with a world-leading hyper-connected supercomputing and quantum computing infrastructure, which will be easily and securely accessible from anywhere in Europe. The new regulation will also enable support to research and innovation activities for new supercomputing technologies, systems applications and products as well as the development of necessary skills to use the infrastructure and form the basis for a world-class HPC ecosystem in Europe.

Benefits of the supercomputing

Supercomputing is a critical tool for understanding and responding to complex challenges and transforming them into innovation opportunities.

Benefits for citizens

Supercomputing is starting to play a key role in medicine: for discovering new drugs, developing and targeting medical therapies for the individual needs and conditions of patients experiencing cancer, cardiovascular or Alzheimer’s diseases and rare genetic disorders. Today, supercomputers are actively involved in the quest for treatments for COVID-19 by testing drug candidate molecules or repositioning existing drugs for new diseases. Supercomputing is also crucial to understand the generation and evolution of epidemics and diseases.

Supercomputing is of critical importance to anticipate severe weather conditions: it can provide accurate simulations predicting the evolution of weather patterns, as well as the size and paths of storms and floods. This is key to activate early warning systems to save human lives and reduce damages to our properties and public infrastructures.

Supercomputers are also key to monitor the effects of the climate change. They do so by improving our knowledge of geophysical processes, monitoring earth resource evolution, reducing the environmental footprint of industry and society or supporting sustainable agriculture trough numerical simulations of plant growth.

Supercomputers are also vital for national security, defence and sovereignty, as they are used to increase cybersecurity and in the fight against cyber-criminality, in particular for the protection of critical infrastructures.

Benefits for industry

Supercomputing enables industrial sectors like automotive, aerospace, renewable energy and health to innovate, become more productive and to scale up to higher value products and services.

Supercomputing has a growing impact on industries and businesses by significantly reducing product design and production cycles, accelerating the design of new materials, minimising costs, increasing resource efficiency and shortening and optimising decision processes.

It paves the way to novel industrial applications: from safer and greener vehicles to more efficient photovoltaics, sustainable buildings and optimised turbines for electricity production.

In particular, the use of supercomputing over the cloud will make it easier for SMEs without the financial means to invest in in-house skills to develop and produce better products and services.

Benefits for science

Supercomputing is at the heart of the digital transformation of science. It enables deeper scientific understanding and breakthroughs in nearly every scientific field. 

The applications of supercomputing in science are countless: from fundamental physics (advancing the frontiers of knowledge of matter or exploring the universe) to material sciences (designing new critical components for the pharmaceutical or energy sectors) and earth science (modelling the atmospheric and oceanic phenomena at planetary level).

Many recent breakthroughs would not have been possible without access to the most advanced supercomputers. For example for the Chemistry Nobel Prize winners in 2013, supercomputers were used to develop powerful computing programs and software, to understand and predict complex chemical processes or for the Physics Nobel Prize in 2017 supercomputers helped to make complex calculations to detect hitherto theoretical gravitational waves.