
User Best Practices and
Results on MN5

Aitor Gonzalez-Agirre

Language Technologies Unit

Language Technology Unit

Context and motivation

Towards truly
multilingual EU LLMs

• Large Language Models (LLMs), such as OpenAI's GPT, Google's Gemini,
and Meta's LLaMA, are trained on massive amounts of text data
primarily in English, limiting their performance in other languages.
• Performance of these LLMs for languages with a “weak” or “moderate”

technology support, is always significantly weaker than in English.

• The field of generative AI is largely dominated by American technology
giants.
• Europe is far behind.

• Although most LLMs are 'weight open', they are far from being truly
open source.
• Often the code is not open and there is little information on training data.

• New European AI regulations impose levels of transparency and
traceability of data that require an adequate approach.

• In response to this situation, three national projects (AINA, ILENIA and
Modelos) were created to develop models and resources for the
languages of Spain.

MareNostrum 5

MareNostrum 5: Storage

MareNostrum 5: General Purpose Partition

MareNostrum 5: Accelerated Partition

MareNostrum 5: H100 64GB GPUs

What is 3D parallelism?

Objectives

• Reduce the training time of large deep learning models.
• Allow for the training of larger models.
• Optimize hardware utilization.

Definition
3D parallelism training tackles these objectives with a combination of three methods:

• Tensor Parallelism.
• Pipeline Parallelism.
• Data Parallelism.

What is 3D parallelism?

Typical Bottlenecks

• Communication Latency. The communication between nodes causes latency in the training that
must be studied and optimized.

• Coordination Complexity. 3D parallelism involves intricate data partitioning and synchronization,
making it challenging to implement and manage efficiently.

• Framework Support. Many deep learning frameworks and libraries lack robust support for 3D
parallelism, limiting its usability.

• Stability. Larger models can exhibit spikes during pre-training, posing challenges for maintaining
stable and consistent training progress.

Data, Pipeline and Tensor Parallelism

• Lower model parallelism does not always imply better performance.
• Increased model parallelism reduce data parallelism, which in turn can improve the bottlenecks

derived from the communication latency associated with it.

• We could not find a single run where FP8 was better than BF16 in performance, which indicates
that the computation was not the main bottleneck.

• NeMo framework proved to be more optimal than GPT-NeoX.

jobid NPARAMS(B) world gbs mbs tp pp dp bits TFlops/GPU

1561797 7220000000 512 1024 4 4 1 128 bf16 225.49

1549683 7200000000 512 1152 3 4 1 128 bf16 219.48

1549657 7200000000 512 1024 4 4 1 128 bf16 217.33

1542017 7200000000 512 1024 2 2 1 256 fp8 209.12

1561796 7220000000 512 1024 2 4 1 128 bf16 207.92

1561803 7220000000 512 1152 3 4 1 128 bf16 207.62

1549632 7200000000 512 1024 2 2 1 256 bf16 206.62

Scalability

• Scalability is not linear, and the performance per GPU decreases as we increase the number of
nodes.

• The larger the model, the better it scales to a large number of nodes.
• For the 7B model, going from 64 nodes to 128 nodes results in a throughput increase of 86%, but

going from 64 nodes to 192 nodes, this increase is reduced to 68%.
• For the 40B model, scaling from 256 nodes to 512 nodes still yields an increase of 73%.

Objectives & Roadmap

• OBJECTIVE: To generate a family of decoder models trained with a large volume of high quality,
legal data, with a good multilingual composition and representation of different domains. We have
collected a corpus of 10 Trillion tokens on 35 languages (+code), cleaned & deduplicated with a
focus on Spanish:

• First stage: Train 2B, 7B & 40B models.

• Second stage: MoE and Multimodal variants.

• ROADMAP:
1. Debugging phase of frameworks and corresponding bug fixing. DONE
2. Ensure correct operation of critical functions such as: checkpoint copying; stopping and resuming of training; de-scaling of

models (e.g. downscaling from 128 to 64 nodes, and still training correctly); log copying, DONE
3. Performance testing, looking for the best hyper parameter settings to get the best performance. DONE
4. Scalability tests, to check that the performance obtained in (3) is not lost by increasing nodes and/or model size. DONE
5. Train the models! DONE/In progress
6. Evaluate and release the models. DONE/In progress

Best Practices I
• Intended use of the Accelerated Partition (ACC) vs General Partition (GPP):

• Bear in mind the specific use of each queue. If only CPUs are needed, DO NOT send to ACC.

• DO NOT run compute-intensive jobs in a login node to avoid overloading it.

• When sending a job to the queue, DO NOT ask for more resources than necessary.
• This applies to both the number of nodes and the duration of the job.

• Use the debug queue for short jobs, very useful for rapid tests.

• With great power comes great responsibility: DO NOT abuse salloc.

Best Practices II

• Edit your .bashrc file to make sure that newly created files have the right permissions by default.

• To copy or move large files, consider using the dtcp, dtmv, and dtrsync commands.

• Use symbolic links to avoid duplicating unnecessary data.

• Increase your data loading speed by using the local storage in each node.

• Data management: The different filesystems and how to use each of them.
• Home: Personal finals.
• Projects: Projects data, environment, final results.
• Scratch: Temporal files, such as checkpoint checkpoint or intermediate data.
• Tapes: Long-term storage for data that is not expected to be processed in the short-medium term.

Tips for Users I
• Useful slurm commands:

• sbatch: Submit a batch script to slurm.

• squeue: View job information.

• scancel: Cancel a slurm job.

• salloc: Allocate nodes to work interactively. Use with caution, and DO NOT forget to release the nodes after finishing.

• scontrol: View of modify slurm configuration.

• Useful bash commands:
• htop: Process monitoring.

• nvidia-smi: To monitor GPU usage.

• df/du: Information about disk usage.

• ps: Information about running processes.

• chmod: Set and modify file permissions (set them correctly!).

• screen/tmux: To use multiple shell sessions from a single ssh session.

Tips for Users II
• Useful MN5 commands:

• bsq_quota: Information about the available space on each file system.
• Check regularly: If the system runs out of space (for example, due to creating checkpoints), execution will stop.

• bsc_queues: Information about the queues available to the user.
• Select the appropriate one, based on the number of nodes needed and the maximum duration of each queue.

• For debugging, send shorter jobs to the debub to reduce the time in the queue.

• Create aliases in your .bashrc to save time when doing tasks you do frequently:
• alias goto_projects='cd /gpfs/projects/bsc88/'

• alias myenv_load='source ~/venv/bin/activate/'

• alias salloc_node='salloc -A bsc88 -q acc_bscls -n 1'

• alias print_dir_structure="ls -R . | grep \":$\" | sed -e 's/:$//' -e 's/[^-][^\/]*\//--/g' -e 's/^/ /' -e 's/-/|/'"

Good to know
• A daily backup is made from the support team:

• Only for Projects filesystem.

• If you accidentally delete something, you can contact them.

• Use alogin4 for internet access:
• Very useful to install libraries. Requires VPN.

• Visit the HPCPortal for job monitoring and machine stats:
• You can share your jobs with other member of the BSC.

Tips for Scaling
• Everything that was working, suddenly, stopped working.

• Increasing nodes does not improve performance.

• Or worse, doubling nodes reduces performance.

• Identify what is causing the problem. Three usual suspects:
• GPUs: Is your parallelization correct?
• CPUs: Are some CPUs saturated?

• If your software is not doing this correctly, you need to set the CPU affinity manually.

• Storage: Can your filesystem load the necessary data fast enough?
• Try moving the data to a faster disk: the compute nodes' local SSD disk, or even a virtual disk in RAM.

• Network: Does your software manage InfiniBand correctly?
• Each node has 4 InfinyBand lanes. Manually assign each lane to each of the GPUs (the closest one) to avoid all of

them using the same.

Extra: Submitting jobs with dependency
• During the 7B training, I went on vacation for a week:

• You're blocking the queue.

• Having a second job in the queue is useful, when the first fails the second will automatically resume
the execution.
• Problem 1: The second job was not dependent on the first.
• Problem 2: They were 512 node jobs (MN5 has 1,120 nodes).

• Since we were launching to a queue with the highest priority, slurm was trying to reserve another 512 nodes for
the second job, and not letting any other jobs in.

• Solution: Submit the jobs with dependency.

Best Practices III: Job dependencies.
• Slurm allows you to launch jobs with different dependencies on other jobs:

• sbatch --dependency=<type:job_id[:job_id][,type:job_id[:job_id]]> ...

• Dependency types:

• after: Job begins once the dependency has started.

• Useful to synchronize experiments.

• afterany: Job beings once the dependency has finished, regardless of what happened.

• Useful for not using too many nodes at the same time with jobs that don't really depend on each other.

• afternotok: Job begins once the dependency has failed.

• Useful for resuming jobs from a previous checkpoints.

• Use this to submit your LLM training. Your second job will be in the queue without blocking other users.

• afterok: Job begins once the dependency has completed without errors (exit code 0).

• Useful to run a second step. For instance, to run a finetuning only after the pretraining has finished, or to run the evaluation after the finetuning.

• Warning: Exit code 0 only indicates that there have been no errors in the execution. It does not ensure that there are no conceptual or design errors.

• Command example: sbatch -d afternotok:3638431 launch_job_7b.sh

One last tip

• READ the MN5 documentation:
• https://www.bsc.es/supportkc/docs/MareNostrum5/intro/

https://www.bsc.es/supportkc/docs/MareNostrum5/intro/
https://www.bsc.es/supportkc/docs/MareNostrum5/intro/

User Best Practices and
Results on MN5

Aitor Gonzalez-Agirre

Language Technologies Unit

	User Best Practices and Results on MN5
	Language Technology Unit
	Context and motivation
	MareNostrum 5
	MareNostrum 5: Storage
	MareNostrum 5: General Purpose Partition
	MareNostrum 5: Accelerated Partition
	MareNostrum 5: H100 64GB GPUs
	What is 3D parallelism?
	What is 3D parallelism?
	Typical Bottlenecks
	Data, Pipeline and Tensor Parallelism
	Scalability
	Objectives & Roadmap
	Best Practices I
	Best Practices II
	Tips for Users I
	Tips for Users II
	Good to know
	Tips for Scaling
	Extra: Submitting jobs with dependency
	Best Practices III: Job dependencies.
	One last tip
	User Best Practices and Results on MN5

