
iGenius ©2024 Confidential – Do not disseminate

User Best Practices and Results on Leonardo

Paolo Albano

Confidential - Do not disseminateiGenius ©2024

We believe in AI solutions that prioritize people over data, putting technology at the

service of humanity. We aim to create a world where data becomes second nature to

everyone, fostering a decision-making culture that can finally be inclusive and intuitive.

Our goal is to enable anyone to explore company data and ask business questions in

natural language. We are committed to making data analysis accessible, secure and

private, supporting businesses in highly regulated sectors.

Humanizing data,
democratizing knowledge.

Becoming the leading force
in AI for businesses.

Our mission Our vision

iGenius ©2024 Confidential – Do not disseminateiGenius ©2024 Confidential – Do not disseminateConfidential - Do not disseminate

We help companies
transform data into

decision intelligence

iGenius ©2024

iGenius ©2024 Confidential – Do not disseminateCONFIDENTIAL - DO NOT DISSEMINATE

Crystal

Confidential - Do not disseminate

Crystal is an AI-powered Decision Intelligence tool for

analyzing your business data in natural language.

Interacting with Crystal is as easy as talking to your team!

The revolution of
the user interface

Confidential – Do not disseminate

iGenius ©2024

Italia

Our first LLM,
100% Open Source
Italia 9B is a foundational LLM with 9 billion parameters, a
4,096-token context window, and a 50,000-token
vocabulary, trained entirely from scratch in Italian on
trillions of tokens from diverse data sources, including
public, synthetic, and domain-specific content.

This exclusive Italian training enables Italia 9B to capture
linguistic and cultural nuances with exceptional precision,
without relying on English translations.

Italia 9B is developed in collaboration with Cineca and
released under the MIT license.

iGenius ©2024 Confidential – Do not disseminate

Why use HPC: Model Complexity
How much memory does it take?

Memory for model parameters Memory for optimizer (AdamW)

Batch Memory More memory as overhead

๏ Number of parameters: 9 Billions

๏ Memory for parameters

๏ Params Memory = N x bytes per parameter

(FP32 param (32-bit floating point): 4 bytes per parameter)

Total parameter Memory = 4 bytes x 9 x 10^9 = 36GB

Total Optimizer ≈ 3 x Parameter Memory

(same amount of model parameters for gradient, first and second moments)

Based on batch size and number of tokens per batch (context length)

Batch Memory = batch size × tokens per batch × embedding size × bytes per embedding

๏ Memory for network communication

๏ Possible gradient accumulation

๏ Pytorch buffers

Total Memory ≈ Parameters Memory + Optimizer Memory + Batch Memory + Overhead

iGenius ©2024 Confidential – Do not disseminate

Why use HPC: Dataset Complexity

Today v0.1

Composition 90% Italian data, 10% English data

Dataset size Around 1.2 Trillion of tokens

Disk size Around 4TB

Tomorrow CPT

Composition 50% Italian data, 50% English data

Dataset size Around 3 Trillion of tokens

iGenius ©2024 Confidential – Do not disseminate

Why use HPC: Porting from torchrun to slurm

Manually launch on multiple nodes Move everything to slurm

(example with 2 nodes and 4gpu each node)

On master node

Other nodes

iGenius ©2024 Confidential – Do not disseminate

Why use HPC: HPC vs. cloud vendor

Pros Cons

No shared resources when get exclusive
nodes, which can decrease performance

Dedicated Resources

Greater control over the environment, software stack,
and hardware optimizations tailored to specific needs.

Customization

Facilitates running the same job across different
nodes, useful in the early stages of a project

Ease of Job Scaling

The process of porting deep learning model training is
greatly simplified with frameworks like Pytorch

Simplified Porting

Provisioning nodes with GPUs can be quicker than with
cloud vendors, especially due to regional limitations

Faster GPU Provisioning

A brief onboarding phase is necessary to understand
how to use the HPC effectively, including job submission,
queue management, job dependencies, and monitoring

Onboarding Phase

Efficient LLM training requires not only powerful and
modern GPUs (e.g., support for FlashAttention), but also
fast communication between GPUs (Infiniband) and
high-speed storage to optimize data throughput. Training
jobs for an LLM last several days, which introduces
infrastructural complexities.

Not all HPC are LLM ready

iGenius ©2024 Confidential – Do not disseminate

Resource Optimization: GPU Load Optimization
To achieve optimal GPU utilization between 70% and 90%, it's essential to conduct various test trainings to identify the
hyperparameter configurations that yield the best performance. Below this threshold, GPU utilization is considered
underused, while exceeding this range can lead to potential issues that may slow down the training process:

Increased Latency
One or more GPUs may experience
higher latency, creating bottlenecks
that can hinder overall performance.

Garbage Collection
Triggering the PyTorch garbage collector more
frequently can introduce delays in the training
loop.

Out of Memory
(OOM) Risks

Operating above the optimal GPU utilization increases the risk of
encountering OOM errors, which can halt the training process.
By carefully tuning hyperparameters and monitoring GPU
performance, we can strike a balance that maximizes efficiency
while minimizing these risks.

A monitoring tool is essential for these evaluations. In our case, we chose Weight & Biases.

We use Weight & Biases (W&B) for
tracking training jobs, logging metrics,
and managing experiments.

However, since Leonardo's nodes are
not connected to the internet, W&B
cannot be used as it continuously
sends information to W&B's online
platform.

To work around this, W&B can be
used in offline mode and later synced
manually.

add as env variable:
	 export WANDB_MODE=offline

The job will create a folder wandb that
can be sync manually with:
 	 wandb sync --sync-all	

iGenius ©2024 Confidential – Do not disseminate

Resource Optimization: Checkpoint Strategy
Optimizing checkpointing during the training of a Large Language Model (LLM) is crucial to balance the time spent
saving checkpoints and the ability to resume training without significant loss in case of interruptions.

๏ During the initial tests, based on the duration of the init phase, you can decide to save every n hours of training

(usually a good compromise is to save every 3-5 times the duration of the init phase) or an equivalent number

of steps.

๏ Don’t waste disk space:

• Reduce the Number of Checkpoints kept

• Metric-based checkpoints

๏ Optimized Distributed Checkpointing: Some acceleration frameworks (like DeepSeed) provide tools to

manage distributed checkpointing, avoiding redundant saving on each device.

๏ Use High-Performance File Systems for Checkpointing: on Leonardo, we observed a performance increase by

switching to the fast partition, reducing the inizialization time from 1 hour to approximately 20 minutes

๏ Remember to submit the same job in as dependency to automate the resume process. This way, if the job fails

or is interrupted, it can automatically restart from the last checkpoint without manual intervention.

iGenius ©2024 Confidential – Do not disseminate

Resource Optimization: Pre-Tokenization
Why Pre-Tokenize?

Speed-up Training

Reduced Latency

Simplified Pipeline

Tokenization CPU-Intensive Process

Easier Optimization and Partitioning

By pre-processing data, we minimize delays during training iterations, leading
to a smoother training experience.

Streamlines the data loading process, making it easier to manage large
datasets.

Pre-tokenizing the dataset before training can significantly reduce training time
by eliminating the need for tokenization during the training loop.

Since tokenization is CPU-intensive, we can create a dedicated job for this
task, avoiding the use of GPU nodes and freeing up valuable resources for
other processes.

Pre-tokenizing the dataset allows for easier optimization and partitioning based
on token counts. Only after tokenization do we know the precise number of
tokens in our dataset, enabling more informed decisions for data management.

iGenius ©2024 Confidential – Do not disseminate

Resource Optimization: Training Parallelism

Data Parallelism

Model Parallelism

Training parallelism refers to techniques that distribute the training workload across multiple processors (CPUs/GPUs) to
speed up the training process and handle larger models and datasets.

๏ Distributes input data across multiple GPUs.

๏ Each GPU processes a portion of the data independently.

๏ Can be effectively used on relatively small models to enhance

training speed without requiring extensive resources.

๏ Splits the model itself across multiple devices.

๏ Useful for very large models that do not fit into a single GPU’s

memory.

What we used

FSDP hybrid: is a training strategy that combines data
parallelism and model parallelism to optimize resource
utilization and memory efficiency. Apply FULL_SHARD
within a node, and replicate parameters across nodes,
reduced communication volume that could be a bottleneck.

iGenius ©2024 Confidential – Do not disseminate

Resource Optimization: Performance Optimization

Mixed Precision Training Gradient Accumulation

๏ Faster Computations

๏ Reduced Memory Usage (see Overhead)

๏ Enables effective training with larger effective
batch sizes without exceeding memory limits,
improving model convergence

๏ Balances the workload across multiple
iterations, ensuring that GPUs remain
efficiently utilized without the risk of memory
overflow.

Mixed precision training utilizes both 16-bit (BF16)
and 32-bit (FP32) floating-point types during model
training. This approach leverages the speed of BF16,
particularly optimized for NVIDIA GPUs, while
maintaining the numerical stability of FP32 for
certain calculations.

The optimizer step is applied only after a specified
number of mini-batches have been processed.

Thank you

iGenius ©2024 – Confidential, do not disseminate

