

EuroHPC JU supercomputers state-of-play and upcoming systems

Vangelis Floros, Head of Sector Infrastructure 24 March 2023

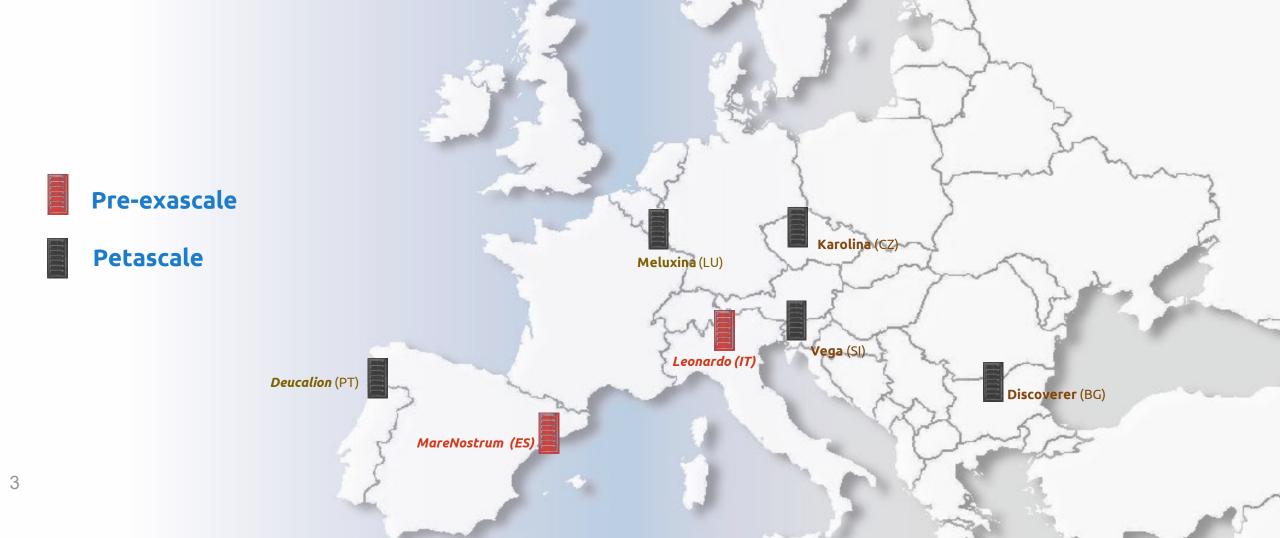
2

EuroHPC Infrastructure

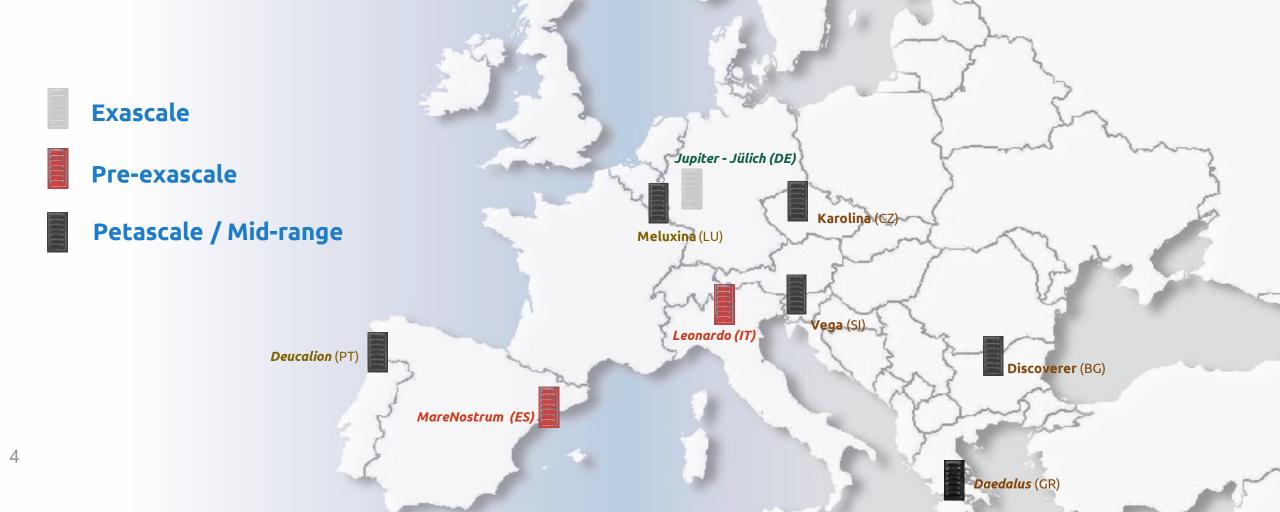
- Empowering European Scientific Research, Academia, Industry & SMEs
- Providing the necessary computing power to accelerate discovery and innovation in Europe

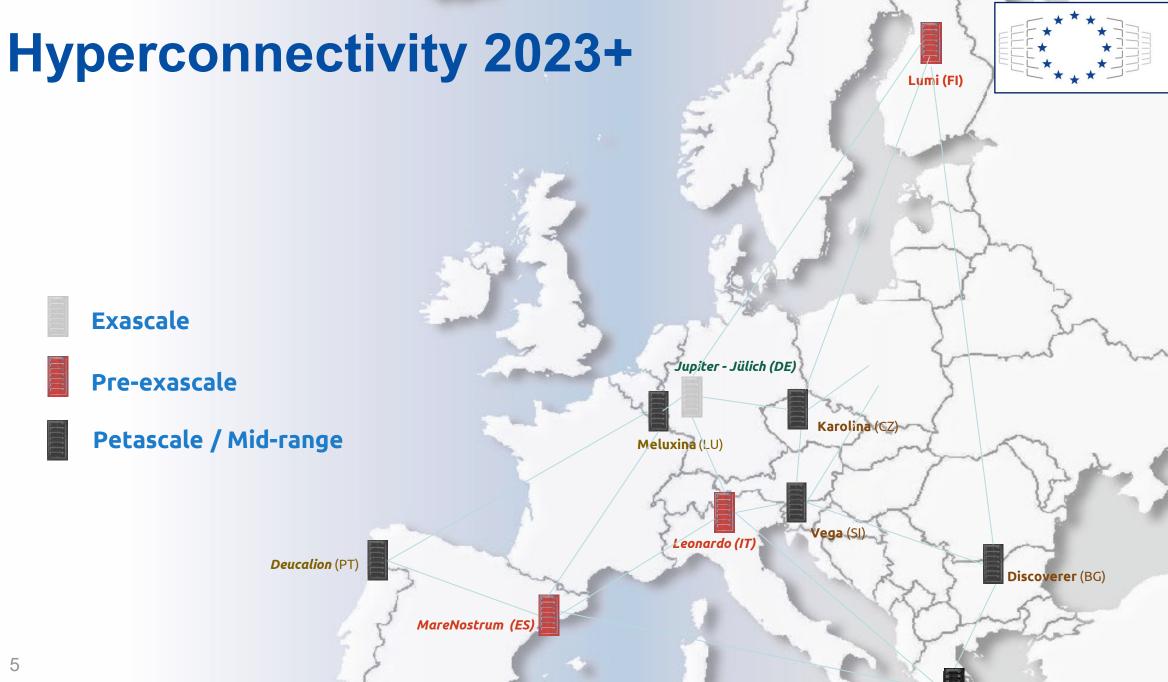
EuroHPC Infrastructure activities

- Hosting Entity Selection
- System Procurements
- Operation & Monitoring
- Access Time allocation
- Hyperconnectivity
- Federation
- High-Level Application Support



EuroHPC systems 2019-2023





EuroHPC systems 2023-2025

EuroHPC Joint Undertaking

Federation 2023+

Federate HPC resources accross all EuroHPC systems

 Authentication, Authorization and Identification services (AAI)

Computing services

- Interactive Computing
- Cloud access Virtual Machines Containers

Data services

6

- Archival Services and Data repositories
- Data mover / transport services

User and Resource management

Operational systems | Pre-exascale

LUMI Consortium (Coordinator CSC) Kayaani, Finland Leonardo Consortium (Coordinator CINECA)

Bologna, Italy

Cray EX, Hewlett Packard Enterprise #3 Top500 (Nov 2023): **309.1** PFlops (LUMI-G)

AMD platform

CPU: 64-core next-generation AMD EPYC[™]

GPU: AMD Instinct[™] (MI250X),

Atos BullSequana XH2000 #4 Top500 (Nov 2022): 238.7 PFlops (BOOSTER)

Intel/NVidia platform
 CPU: Intel Sapphire Rapids
 GPU: Nvidia custom Ambere (A100)

Operational systems | Petascale

Vega

MeluXina

Karolina

Discoverer

Sustained performance:	6,9 petaflops
CPU:	AMD Epyc Rome
GPU:	Nvidia A100
TOP500 ranking:	#32 in EU; #106 globally (<u>June</u> <u>2021</u>)
Vendor/model	Atos BullSequana XH2000
Operated by	IZUM, Maribor, Slovenia

Sı pe	Petascale systems in numbers	Sustained performance:	9,13 peta	flops	Sustained performance:	4,45 petaflops
CF				Rome	CPU:	AMD Epyc Rome
GF	33.83 Petaflops sustained (47	19 Petaflons Rr	neak) ^{A10}	0	GPU:	-
тс	#10 IN EU; #36	TOP500 ranking:	#20 in EU globally (<u>]</u> 2021)	: #69 <u>une</u>	TOP500 ranking:	#27 in EU; #91 globally (<u>June</u> <u>2021</u>)
Ve	 3401 CPU Nodes 332 GPU Nodes 			0 Plus 6500	Vendor/model	Atos BullSequana XH2000
O	 FPGA, Visualisation and C 24PB Lustre Storage 	Cloud capabilities	SIT4I, Ostrava, Cze Republic	ch	Operated by	PSB consortium, Sofia, Bulgaria
	6802 AMD EPYC Rome C	PUs				
	• 1616 Nvidia A100 GPUs					

GPP - General Purpose

Intel Sapphire Rapids Peak performance: 45,4 Pflops

65 Kw/rack (201 x 60 x 160) DLC + Rear Door

May 2023

NGT GPP - Next Generation

NVIDIA Grace

Peak performance: 2,82 Pflops Sustained HPL: 2 Pflops

October 2023

The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC Joint Undertaking, through the European Union's Connecting Europe Facility and the Horizon 2020 research and innovation programme, as well as the Participating States Spain, Portugal, Croatia, and Turkey

MareNostrum5

InfiniBand NDR 200 4 IB racks + 4 Eth racks 22 Kw/rack + 11 Kw/rack Rear Door

Spectrum Scale File System 248 PB HDD + 2,81 PB NVMe 402 PB tape

25 x 22 Kw/rack, Rear door 26 x 1,4 Kw/rack, ambient

January 2023 / March 2023

Barcelona Supercomputing Center Centro Nacional de Su

ACC – Accelerated

Intel Sapphire Rapids NVIDIA Hopper Peak performance: 260 Pflops

100 kw/rack (225 x 90 x 135) DLC (3,86 kw to ambient)

June 2023 / September 2023

NGT ACC - Next Generation

Intel Emerald Rapids Intel Rialto Bridge

Peak performance: 6 Pflops Sustained HPL: 4,24 Pflops

December 2023

Compute partitions overview

				Nodes									
		Racks	Cooling	Total	per rack	Provider	Processor/Accelerator		Memory	PFlops (HPL)		Local Drive	High-Perf. Network
Main	General Purpose	89		6192		2) Lenovo	2x Intel Sapphire R. 8480+		>2GB/core 256GB DDR5		>205	960GB 1	
			DLC	216	72			56c @ 2GHz	>8GB/core 1024GB DDR5	35.43			1x NDR200 Shared by 2 nodes
		1	+RDHX	72	(6x6x2)		2x Intel Sapphire R. 03H-LC	56c @ 1.7GHz	> 0.5GB HBM/core 128GB HBM + 32GB DDR5	0.34			
	Accelerat ed	35 DLC		1120	32	Atos	2x Intel Sapphire R. 8460Y+	32c @ 2.3GHz		163		480GB NVMe	4x NDR200
			DLC				4x Nvidia Hopper 64GB HBM		512GB				
]					
Next Gen	General Purpose	7	AC +RDHX	408	68	Atos	2x Nvidia Grace	72c @ 2.6GHz	240GB LPDDR5	2		128GB NVMe	1x NDR200
	Accelerat ed	_ 1	1 DLC 24		24	Lenovo	2x Intel Emerald R.	4 8c	512GB DDR5	4.24		960GB NVMe	
				24			4x Intel Rialto Bridge 128GB HBM2E						2x NDR

Deucalion		Minho Advanced Computing Center
Compute partitions:	ARM Partition: 1632 nodes, 3.8 PFLops ; x86 Partition: 500 nodes, 1,62 PFLops ; Accelerated: 33 nodes, 1,72 PFLops	
Central Processing Unit (CPU	A64FX (ARM partition), AMD EPYC (x86 partitions)	
Graphics Processing Unit (GPU):	NVidia Ampere	
Storage capacity:	430 TB High-speed NVMe partition, 10.6 PB high-speed based Parallel File System partition.	

JUPITER Exascale System

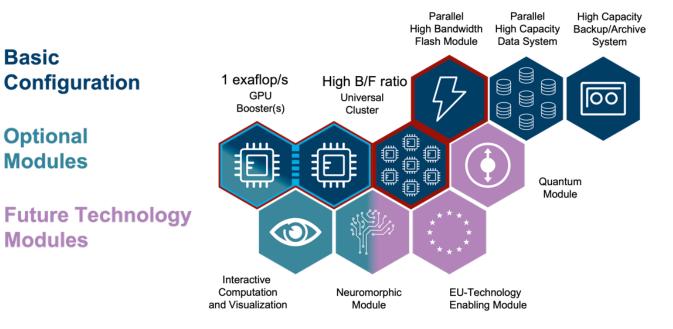
Hosted by Julich Supercomputing Center (Germany)

Sustained **1 EFlops** performance Implementing a dynamic **Modular Supercomputing Architecture** (MSA)

Hosted in **containerised** data center

Integration of European hardware

Procurement status

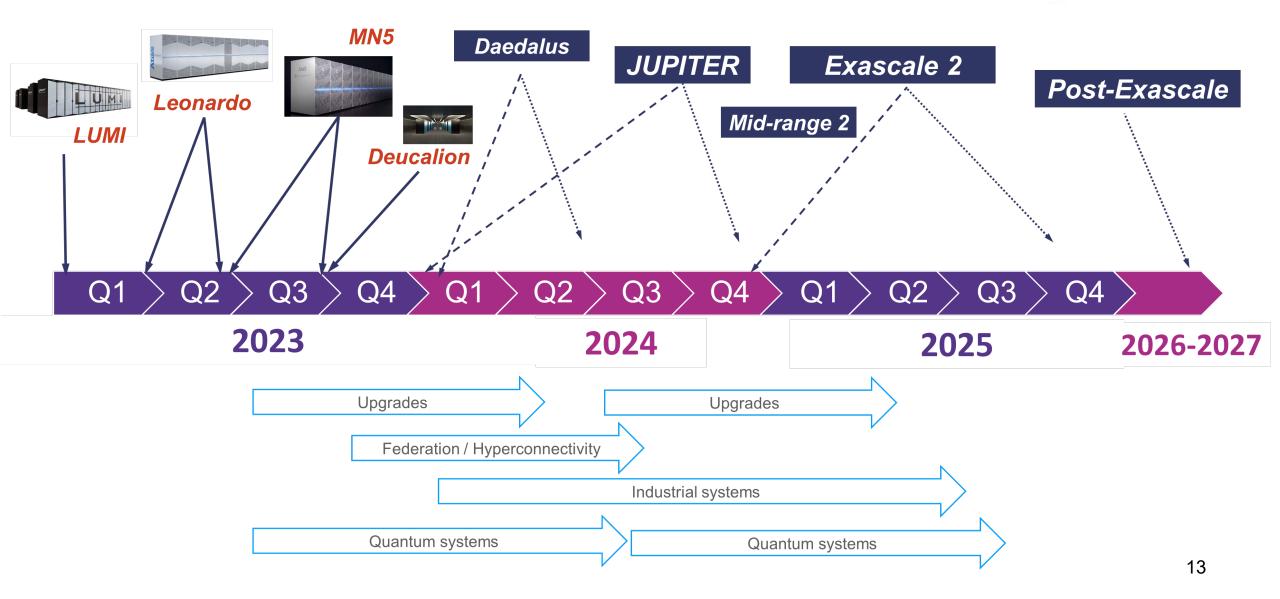

Competitive dialogue (now in Dialogue Phase).

Total budget: **273 Million Euro** (including options)

Contract signature target: Q4 2023

Start of installation: Q1 2024

Acceptance (Phase 1): Q4 2024



JÜLICH

Forschungszentrum

Next systems Timeline

ACCESS TO EUROHPC SUPERCOMPUTERS

WHO IS ELIGIBLE?

- Academic and research institutions (public and private)
- Public sector organisations
- Industrial enterprises and SMEs
- Established in the EU or H2020 affiliated country
 - \rightarrow Open to all fields of research

WHICH TYPES OF ACCESS EXIST?

- Regular access
- Extreme scale access
- Benchmark access
- Special access
- •••

WHAT ARE THE CONDITIONS FOR ACCESS?

Access is free of charge. Participation conditions depend on the specific access call that a research group has applied to.

In general users of EuroHPC systems commit to:

- use computing resources primarily for research and innovation
- acknowledge the use of the resources in their related publications
- contribute to dissemination events
- produce and submit a report after completion of a resource allocation

More information on EuroHPC access calls available at: <u>https://eurohpc-ju.europa.eu/participate/calls_en</u>

Access Policy

<u>Access Policy v1.1</u> as adopted by the EuroHPC GB

- 6 Access Modes offering resources on a continuously open call basis with periodic cut-off dates.
 - Extreme scale: Large applications, 2xYear. <u>Peer-reviewed</u>. Separate track for industry.
 - **Regular:** Medium to large applications, 3xYear. <u>Peer-reviewed.</u> Separate track for industry.
 - Development. All systems. Up to 1 year access. Monthly cut-offs
 - Benchmark. All systems. Up to 3 months access. Monthly cut-offs
 - Fast track for Industry & Academia. Quick access to previously completed applications

Commercial Access (*)

- Pay-per-use model
- No restrictions for open research applications for civilian purpose
- PRACE supports EuroHPC in the implementation of the Access Policy!

Visit https://prace-ri.eu/hpc-access/eurohpc-access/

Current and upcoming offering of resources

<u>By end 2023</u>: **64.5 Million** node hours across **8 systems** (**15 partitions, 22.596 nodes**).

- CPU, GPU, FPGA resources
- Variety of platforms: AMD (x86, Instinct), Intel (x86), Nvidia (A100, H100), Fujitsu ARM (A64FX)
- ~870 PFlops aggregated performance

To reach **91.3 Million** node hours <u>by end of 2024 (full systems capacity)</u>

Industry/SMEs

- Up to 20% of total resources available for Commercial Access (*)
- 2023-2024: EuroHPC to procure Industry specific supercomputer in collaboration with industrial partner

Thank you!

Keep up with EuroHPC news:

https://eurohpc-ju.europa.eu

EuroHPC Joint Undertaking

EuroHPC Joint Undertaking

17