
1

User Best Practices and
Results on MeluXina

Presented by

Mohamed Adel Mohamed ALI

2

Agenda

• Introduction to CVI² Research Group
• Overview of MeluXina Supercomputer
• System Structure and Access
• Working with MeluXina
• Case Studies and Results
• Tips for Maximizing Performance
• Common Pitfalls to Avoid
• Conclusion and Further Resources

22 members, 6 women
13 nationalities

> 150 peer-reviewed
scientific publications

4 IEEE Best Paper
Awards

4 patents

10 PhD theses and 15 MSc theses
successfully completed

8 PhD + 1 MSc theses ongoing
8 Research Associates ongoing

2 Research Scientists
1 Professor

> 13 M€ Funding since 2009
Industrial partners: LMO, IEE, Infinite Orbits,

Artec 3D, DataThings, POST Luxembourg
European Defense Fund, EU H2020 & ESA

Ministry of Economy
Fonds National de la Recherche (FNR)

Research on computer vision, image processing, image analysis,
visual data understanding, and machine learning.

Computer Vision, Imaging and Machine Intelligence

CVI2 Research Group

3

4

CVI²: Computer Vision, Imaging and Machine Intelligence Research Group

The Computer Vision, Imaging & Machine Intelligence Research Group (CVI²) at the Interdisciplinary Centre for Security, Reliability and Trust (SnT) of
the University of Luxembourg (UL), headed by Prof. Dr. Djamila Aouada.

5

CVI²: Computer Vision, Imaging and Machine Intelligence Research Group

The Computer Vision, Imaging & Machine Intelligence Research Group (CVI²) at the Interdisciplinary Centre for Security, Reliability and Trust (SnT) of
the University of Luxembourg (UL), headed by Prof. Dr. Djamila Aouada.

6

CVI²: Computer Vision, Imaging and Machine Intelligence Research Group

The Computer Vision, Imaging & Machine Intelligence Research Group (CVI²) at the Interdisciplinary Centre for Security, Reliability and Trust (SnT) of
the University of Luxembourg (UL), headed by Prof. Dr. Djamila Aouada.

7

CVI²: Computer Vision, Imaging and Machine Intelligence Research Group

8

Introduction to MeluXina

LuxProvide's MELUXINA Supercomputer

• High-performance computing (HPC) cluster

• 18 PetaFlops computing power, 20
PetaBytes storage

• Ranked 36th globally, greenest in EU
(Top500)

9

System Structure

• Login node:
• Where you login after ssh command
• Used for checking resource availability, job status, and requesting

resources
• Compute nodes:

• Where your model training/testing occurs
• 200 nodes, each with:

• 2x AMD EPYC Rome (128 cores)
• 4x NVIDIA Ampere GPUs (40GB each)
• 512GB RAM

• Storage:
• Permanent Storage (5TiB): /project/home/p200249/
• High speed storage (Scratch): /project/scratch/p200249/

• Cleaned-up after some time
• Use it to read/write during experiments, then copy back the

data to permanent storage
• /home/: Only you accessible, place your working env here (conda,

pyenv, etc.)

https://docs.lxp.lu/system/overview/

10

System Structure

11

Working with MeluXina

Resource Management with SLURM

• Key commands:
• squeue: Check status of your jobs
• salloc: Good for interactive jobs

• Example: salloc -A p200111 --res {gpudev, cpudev} -q dev -N 1 -t 0-0:10:0
• srun: For job steps
• sbatch: For passive jobs (recommended)

• Always check GPU utilization

• Optimize data loader to maximize GPU usage

MeluXina Job Submission and Execution Workflow

12

Working with MeluXina

Working Environment Setup

Module system:

• module avail: List available modules
• module spider name: Search specific modules
• module list: List loaded modules
• module purge: Unload all modules
• module load: Load required modules

Python environments:

• Python virtual env: Specify Python version needed
• Conda env: Can transfer your root conda env and specific envs to

MeluXina

Important: Care about CUDA version, GCC version, Pytorch/Tensorflow version

13

Working with MeluXina

Best Practices for Job Submission

• Use sbatch scripts for job submission

• Have a separate folder to store essential sbatch scripts for different
configs/projects

Example sbatch script

14

Working with MeluXina

Data Management and Synchronization

• Use /project/scratch/ for temporary data processing

• Move important results to /project/home/ for long-term storage

• Use rsync to synchronize code between local machines and
MeluXina

Example VSCode Rsync Extension configuration for local synchronization

15

Working with MeluXina

Data Management and Synchronization

• Use /project/scratch/ for temporary data processing

• Move important results to /project/home/ for long-term storage

• Use rsync to synchronize code between local machines and
MeluXina

Example VSCode Rsync Extension configuration for remote synchronization

16

Working with MeluXina

Optimization Techniques

Data Loading:

• Implement efficient data pipelines (preprocessing)
• Use multi-threading and multi-processing
• Optimize batch sizes to fit within memory constraints

GPU Memory Usage:

• Employ mixed precision training and gradient checkpointing
• Use all GPUs of a single node for efficient GPU/Node

consumption

Parallel Training:

• Utilize DistributedDataParallel for multi-GPU setups
• Fine-tune batch size, learning rate, and communication

overhead for distributed training Memory Snapshot

17

Working with MeluXina

Monitoring and Optimization

• Use myquota to check storage quota usage

• Monitor GPU utilization in real-time

• Implement your own logging system alongside SLURM logs

• Save checkpoints wisely, not all checkpoints

• Even though SLURM provides training logs, have your own logging
with your preferred log structure

18

Working with MeluXina

Advanced Techniques

• Build Singularity images from Docker images for stability across
platforms

• Use srun for setup steps, especially for multi-node jobs

• Parallel experiment launch using srun:

• Use environment variables to identify unique experiment IDs:

19

Case Studies and Results

DAVINCI Project

Example 1: DAVINCI Project

• Paper: "DAVINCI: A Single-Stage Architecture for Constrained
CAD Sketch Inference", BMVC 2024

• Setup:
• Used 4 GPUs (48GB each) with DistributedDataParallel
• Increased batch size from 64 to 512 per GPU
• Increased learning rate from 1e-4 to 3.5e-4

• Results:
• Reduced training time from 2-2.5 hours to 30 minutes
• Additional optimizations made to better utilize GPUs

Scan2CAD Project

Oveview of Davinci

20

Case Studies and Results

Knowledge Distillation

Example 2: Efficient Pose estimation using Knowledge Distillation

• Setup:
• Used up to 50GB of GPU memory per node
• Implemented parallel training (multi-GPU setup)
• Used job dependencies to ensure order and avoid

conflicts between jobs
• Results:

• Higher throughput, completing multiple epochs per hour
consistently

• Better ability to handle larger workloads efficiently
• Consistently high resource utilization
• Optimal performance during training

21

Case Studies and Results

Deepfake Detection

Example 3: Multi-task TimeSFormer-based Learning
Framework for Deepfake Detection

• Setup:
• Used up to 40GB of GPU memory per node
• Implemented parallel training (multi-GPU setup)

• Results:
• Higher throughput, completing multiple epochs per hour

consistently
• Better ability to handle larger workloads efficiently
• Consistently high resource utilization
• Optimal performance during training
• Speed up compared to other alternatives: …

Visualization results

Deepfake Detection

22

Case Studies and Results

AI4CC Earth Observation

Example 4: Pretraining Large Masked
Autoencoders for Earth Observation Downstream
tasks

• Setup:
• Implementing parallel training:

▪ Pretraining with up to 4 GPUs
• Efficient storage and optimal access of large-

scale datasets (HDF5 files).
• Handling large inputs, e.g. multimodal and

multispectral data.
• Integration of monitoring/visualising tools

external, e.g. weight and biases.
• Results:

• Faster training time, even for heavy models,
such as ViTs.

• Optimal utilisation of training resources.
• Efficient handling of large non-standard inputs,

e.g. multispectral and multimodal data.

Pretraining stage: Visualisation of results from reconstruction of
multiple modalities.

Finetuning stage: Results on
semantic segmentation

Pretraining stage: Scaling up number of
modalities

23

Case Studies and Results

AI4CC Earth Observation

SELF-SUPERVISED TRAINING OF LARGE MODELS
FOR EARTH OBSERVATION TASKS.

Example of different stages for training large models (foundation models) for Earth
Observation (EO) tasks.

- Involves the use of models with huge number
of parameters, e.g. models based on Vision
Transformers (ViT).
o Some versions of ViT-based models could

have up to 632 millions of parameters.
o Pretraining those models might be

computationally expensive.
- Models should handle not standard inputs,

which is commonly memory intensive.

Example: Training one ViT-B based MAE (~95m
parameters) for 400 epochs could take up to 5 days
using 4 GPUs on Meluxina.

24

Tips for Maximizing Performance

• Always use all GPUs on a single node for efficient GPU/Node consumption

• Adjust learning rates when scaling batch sizes

• Optimize code and training process for better GPU utilization

• Use Singularity containers for consistent environments across platforms

• Implement efficient data pipelines and preprocessing

• Use multi-threading and multi-processing for data loading

• Fine-tune batch size, learning rate, and communication overhead for distributed training

25

Common Pitfalls to Avoid

• Not checking GPU utilization regularly

• Saving all checkpoints instead of only essential ones

• Neglecting to optimize data loaders

• Ignoring the importance of proper logging

• Underutilizing available GPUs on a node

26

Conclusion

• MeluXina offers significant performance gains for large-scale machine learning tasks

• Proper resource allocation and optimization techniques are crucial for maximizing efficiency

• Continuous monitoring and adjustment of parameters lead to optimal performance

• Utilize advanced features like Singularity containers and parallel job launching for best results

• Always strive for efficient GPU utilization and optimized data processing

27

Further Resources

• MeluXina documentation: https://docs.lxp.lu/

• SLURM documentation

• Singularity and Docker documentation

• University tutorials and presentations

https://docs.lxp.lu/

28

Ahmet Serdar
Karadeniz

Doctoral Researcher

Van Dat Nguyen
Doctoral

Researcher

Nassim Mohamed
ALIOUSALAH

Doctoral Researcher

Romain Hermary
Doctoral

Researcher

Dr. Jose SOSA
Research
Associate

Thanks For the Team :)

https://www.uni.lu/en/person/NTAwNjIwOTNfX0FobWV0IFNlcmRhciBLQVJBREVOSVo=/
https://www.uni.lu/en/person/NTAwNjIwOTNfX0FobWV0IFNlcmRhciBLQVJBREVOSVo=/
https://www.uni.lu/en/person/NTAwNjUwNzNfX1ZhbiBEYXQgTkdVWUVO/
https://www.uni.lu/snt-en/people/nassim-mohamed-aliousalah/
https://www.uni.lu/snt-en/people/nassim-mohamed-aliousalah/
https://www.uni.lu/en/person/NTAwNjU0MTNfX1JvbWFpbiBIRVJNQVJZ/
https://www.uni.lu/snt-en/people/jose-angel-sosa-martinez/

Thank You

	Intro slide
	Slide 1

	Agenda
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Content section
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Thank You

