

# **TECHNICAL GUIDELINES – ACCESS CALLS**

Peer-Review Sector – Version 5 – 15/01/2025

### Table of contents

| 1. | AVA     | LABLE SYSTEMS AND RESOURCES OFFERS PER ACCESS CALL | 2  |
|----|---------|----------------------------------------------------|----|
|    | 1.1.    | Regular Access                                     | 2  |
|    | 1.2.    | Extreme Scale Access                               | 3  |
|    | 1.3.    | Al and Data-Intensive Applications Access          | 4  |
| 2. | GEN     | ERAL INFORMATION ON THE AVAILABLE SYSTEMS          | 5  |
| 3. | SUB     | SECTION FOR EACH SYSTEM                            | 11 |
|    | 3.1.    | Vega, IZUM (SI)                                    | 11 |
|    | 3.2.    | MeluXina, LuxProvide (LU)                          | 11 |
|    | 3.3.    | Karolina, IT4Innovations (CZ)                      | 12 |
|    | 3.4.    | Discoverer, Sofia Tech (BG)                        | 12 |
|    | 3.5.    | LUMI, CSC (FI)                                     | 13 |
|    | 3.6.    | Leonardo, CINECA (IT)                              | 14 |
|    | 3.7.    | MareNostrum5, BSC (ES)                             | 14 |
|    | 3.8.    | Deucalion, FCT (PT)                                | 15 |
|    | 3.9.    | JUPITER, JSC (DE)                                  | 16 |
| 4. | GUIE    | ELINES FOR FILLING-IN THE ONLINE FORM              | 17 |
|    | 4.1.    | Resource Usage                                     | 17 |
|    | 4.2.    | Job Characteristics                                | 17 |
|    | 4.2.1   | Wall Clock Time                                    | 17 |
|    | 4.2.2   | Number of simultaneously running jobs              | 19 |
|    | 4.2.3   | Job Size                                           | 19 |
|    | 4.3.    | Storage                                            | 25 |
|    | 4.3.1   | General remarks                                    | 25 |
|    | 4.3.2   | Total Storage                                      | 26 |
|    | 4.3.3   | Number of Files                                    | 28 |
|    | 4.4.    | Data Transfer                                      | 30 |
|    | 4.5.    | I/O                                                | 31 |
| Α  | NNEX 1  | – AVAILABLE RESOURCES VIA BENCHMARK ACCESS         | 32 |
| Α  | NNEX 2  | – AVAILABLE RESOURCES VIA DEVELOPMENT ACCESS       | 33 |
| LI | ST OF 1 | ABLES                                              | 34 |



# 1. AVAILABLE SYSTEMS AND RESOURCES OFFERS PER ACCESS CALL

# 1.1. Regular Access

The contributing sites and the corresponding computer systems for the <u>Regular Access</u> call are listed in the table below.

Table 1: Available systems and resources offers for the Regular Access call

| System Architecture                         |                                                        | Site (Country)                     | Total resources offered per cut-<br>off (node hours) | Minimum re-<br>sources request<br>(node hours) | Maximum re-<br>sources request<br>(node hours) |
|---------------------------------------------|--------------------------------------------------------|------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Vega CPU                                    | BullSequana<br>XH2000                                  | IZUM Maribor (SI)                  | 1,188,382                                            | 60,000                                         | n/a                                            |
| Vega GPU                                    | BullSequana<br>XH2001                                  | IZUM Maribor (SI)                  | 74,274                                               | 25,000                                         | n/a                                            |
| Karolina CPU                                | HPE Apollo<br>2000Gen10 Plus<br>and HPE Apollo<br>6500 | VSB-TUO, IT4Innovations, (CZ)      | 984,725                                              | 60,000                                         | n/a                                            |
| Karolina GPU                                | HPE Apollo<br>2000Gen10 Plus<br>and HPE Apollo<br>6500 | VSB-TUO, IT4Inno-<br>vations, (CZ) | 93,500                                               | 25,000                                         | n/a                                            |
| MeluXina CPU                                | BullSequana<br>XH2004                                  | LuxProvide (LU)                    | 714,956                                              | 60,000                                         | n/a                                            |
| MeluXina GPU                                | BullSequana<br>XH2005                                  | LuxProvide (LU)                    | 249,548                                              | 25,000                                         | n/a                                            |
| Discoverer CPU                              | BullSequana<br>XH2000                                  | Sofiatech, (BG)                    | 1,740,123                                            | 60,000                                         | n/a                                            |
| LUMI-C                                      | HPE Cray EX                                            | CSC (FI)                           | 1,275,760                                            | 60,000                                         | 120,000                                        |
| LUMI-G                                      | HPE Cray EX                                            | CSC (FI)                           | 927,542                                              | 20,000                                         | 150,000                                        |
| Leonardo DCGP                               | BullSequana<br>X2610 compute<br>blade                  | CINECA (IT)                        | 912,244                                              | 60,000                                         | 120,000                                        |
| Leonardo Booster                            | BullSequana<br>XH21355 "Da<br>Vinci" blade             | CINECA (IT)                        | 1,026,275                                            | 25,000                                         | 220,000                                        |
| MareNostrum5<br>GPP                         | Lenovo ThinkSys-<br>tems SD650                         | BSC (ES)                           | 3,321,907                                            | 60,000                                         | 230,000                                        |
| MareNostrum5<br>ACC                         | Atos BullSequana<br>EX3000                             | BSC (ES)                           | 290,304                                              | 20,000                                         | 150,000                                        |
| Deucalion CPU<br>ARM                        | Fujitsu PRIMEHPC<br>FX700                              | FCT (PT)                           | 1,871,388                                            | 60,000                                         | n/a                                            |
| Deucalion CPU<br>X86                        | BullSequana X440<br>A5                                 | FCT (PT)                           | 573,342                                              | 60,000                                         | n/a                                            |
| Deucalion GPU Bull Sequana X410 A5 FCT (PT) |                                                        | 37,840                             | 25,000                                               | n/a                                            |                                                |



# 1.2. Extreme Scale Access

The contributing sites and the corresponding computer systems for the **Extreme Scale Access** call are listed in the table below.

Table 2: Available systems and resources offers for the Extreme Scale Access call

| System              | Architecture                               | Site (Country) | Total resources<br>offered (node<br>hours | Minimum re-<br>sources request<br>(node hours) | Maximum re-<br>sources request<br>(node hours) |
|---------------------|--------------------------------------------|----------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|
| LUMI-C              | HPE Cray EX                                | CSC (FI)       | 2,126,267                                 | 130,000                                        | n/a                                            |
| LUMI-G              | HPE Cray EX                                | CSC (FI)       | 2,782,626                                 | 160,000                                        | n/a                                            |
| Leonardo DCGP       | BullSequana<br>X2610 compute<br>blade      | CINECA (IT)    | 1,520,407                                 | 130,000                                        | n/a                                            |
| Leonardo Booster    | BullSequana<br>XH21355 "Da<br>Vinci" blade | CINECA (IT)    | 3,078,824                                 | 245,000                                        | n/a                                            |
| MareNostrum5<br>GPP | Lenovo ThinkSys-<br>tems SD650             | BSC (ES)       | 5,536,512                                 | 240,000                                        | n/a                                            |
| MareNostrum5<br>ACC | Atos BullSequana<br>EX3000                 | BSC (ES)       | 870,912                                   | 160,000                                        | n/a                                            |
| JUPITER Booster     | BullSequana<br>XH3000                      | Jülich (DE)    | 4,680,000                                 | 245,000                                        | n/a                                            |



# 1.3. Al and Data-Intensive Applications Access

The contributing sites and the corresponding computer systems for the Al and Data-Intensive Applications Access call are listed in the table below.

Table 3: Available systems and resources offers for the AI and Data-Intensive Applications Access call

| System           | Architecture                               | Site (Country) | Total resources<br>offered (node<br>hours | Minimum re-<br>sources request<br>(node hours) | Maximum re-<br>sources request<br>(node hours) |
|------------------|--------------------------------------------|----------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|
| LUMI-G           | HPE Cray EX                                | CSC (FI)       | 412,241                                   | 20,000                                         | 90,000                                         |
| Leonardo Booster | BullSequana<br>XH21355 "Da<br>Vinci" blade | CINECA (IT)    | 456,122                                   | 20,000                                         | 90,000                                         |
| MN5 ACC          | BullSequana<br>XH3000                      | BSC (ES)       | 129,024                                   | 20,000                                         | 90,000                                         |



# 2. GENERAL INFORMATION ON THE AVAILABLE SYSTEMS

The site selection is done together with the specification of the requested computing time in the online form. The applicant can choose one or several machines as an execution system, **as long as proper benchmarks and resource request justification are provided on each of the requested systems**. The parameters are listed in tables. The first column describes the field in the web online form to be filled in by the applicant. The remaining columns specify the range limits for each system.

Table 4: General information about the offered systems, their memory and network capabilities

|                |                              |                                 | Con                      | npute         |              | Memory                    | N                                                   | Network                                                                           |                                         |
|----------------|------------------------------|---------------------------------|--------------------------|---------------|--------------|---------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|
| System         | System type   Processor type |                                 | Type of acceler-<br>ator | Memory / Node | Network Type | Connectivity              |                                                     |                                                                                   |                                         |
| Vega CPU       | Bull Sequana                 | AMD Epyc 7H12<br>(64C, 2.6GHz)  | 960                      | 122           | N/A          | N/A                       | 768 nodes with<br>256 GB, 192<br>nodes with 1 TB    | Infiniband HDR100<br>Dragonfly+                                                   | 5x100GbE                                |
| Vega GPU       | Bull Sequana                 | AMD Epyc 7H12<br>(64C, 2.6GHz)  | 60                       | 7.68          | 4            | NVIDIA A100               | 512 GB                                              | Infiniband HDR100<br>Dragonfly+                                                   | 5x100GbE                                |
| MeluXina CPU   | Bull Sequana                 | AMD Epyc 7H12<br>(64C, 2.6GHz   | 593 (573 +<br>20)        | 75.904        | N/A          | N/A                       | 512 GB (573<br>nodes)<br>4 TB (20 nodes)            | Infiniband HDR 200<br>Single-rail CPU<br>nodes<br>Dual-rail Large<br>Memory nodes | Dragonfly+                              |
| MeluXina GPU   | Bull Sequana                 | AMD Epyc 7452<br>(32C, 2.35GHz) | 200                      | 12.8          | 44           | Nvidia A100 40<br>GB HBM2 | 512 GB                                              | Infiniband HDR 200<br>Dual-railInfiniband<br>HDR 200                              | Dragonfly+                              |
| Karolina CPU   | HPE                          | AMD Epyc 7H12<br>(64C, 2.6GHz)  | 720                      | 92.16         | 0            | N/A                       | 256GB DDR4                                          | Infiniband HDR100                                                                 | 1xHDR100<br>100Gb/s                     |
| Karolina GPU   | HPE                          | AMD Epyc 7763<br>(64C, 2.45GHz) | 72                       | 9.216         | 8            | Nvidia A100-<br>SXM4-40GB | 1024 GB DDR4<br>+ 8x40GB HBM                        | Infiniband HDR                                                                    | 4xHDR<br>800Gb/s                        |
| Discoverer CPU | Bull Sequana                 | AMD Epyc 7H12<br>(64C, 2.6GHz)  | 1128                     | 144.384       | N/A          | N/A                       | 256/1110<br>1024/18                                 | IB DragonFly+<br>200GBps                                                          | 10 Gbps Internet connectivity via GÉANT |
| LUMI-C         | HPE                          | AMD Epyc 7763<br>(64C, 2.45GHz) | 1536                     | 196.608       | 0            | N/A                       | 256 GB<br>(512 in 128<br>node, 1024 in 32<br>nodes) | 200Gbit Slingshot                                                                 | Dragonfly                               |
| LUMI-G         | HPE                          | AMD Epyc 7A53<br>(64C, 2.00GHz) | 2928                     | 187           | 4            | AMD Instinct<br>MI250X    | 512 GB +<br>4x128GB HBM                             | 4x200Gbit Slingshot per node                                                      | Dragonfly                               |

|                      |                         |                                                   | Cor               | npute             |                               |                                                    | Memory                               | lemory Network                                                  |                                                                                                                                                                                  |
|----------------------|-------------------------|---------------------------------------------------|-------------------|-------------------|-------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System               | System Type             | Processor type                                    | Total nb of nodes | Total nb of cores | Nb of acceler-<br>ators /node | Type of accelerator                                | Memory / Node                        | Network Type                                                    | Connectivity                                                                                                                                                                     |
| Leonardo DCGP        | Bull Sequana            | Intel Sapphire<br>Rapids (2x56C,<br>TDP)          | 1536              | 172.032           | 0                             | N/A                                                | (16 x 32) GB<br>DDR5 4800 MHz        | NVIDIA Mellanox<br>HDR DragonFly++<br>200Gb/s                   | DragonFly++ 200Gb/s                                                                                                                                                              |
| Leonardo<br>Booster  | Bull Sequana            | Intel Xeon 8358<br>(32C, 2.60 GHz)                | 3456              | 110.592           | 4                             | NVIDIA®custom<br>Ampere® A100,<br>NVidia 3.0, 64GB | 512 (8x64) GB<br>DDR4 3200 MHz       | NVIDIA Mellanox<br>HDR DragonFly++<br>200Gb/s                   | DragonFly++ 200Gb/s                                                                                                                                                              |
| MareNostrum5<br>GPP  | Lenovo Think<br>Systems | Intel Sapphire<br>Rapids 8480+<br>(56C, 2Ghz)     | 6,408             | 718               | N/A                           | N/A                                                | 256 GB DDR<br>(1024 in 216<br>Nodes) | Infiniband NDR 200<br>Shared by 2 nodes                         | Fat tree (with islands of<br>2160 compute nodes full<br>fat tree)                                                                                                                |
| MareNostrum5<br>ACC  | BullSequana             | Intel Sapphire<br>Rapids 8460Y+<br>(32C, 2.3 Ghz) | 1120              | 72                | 4                             | Nvidia Hopper<br>(64GB HBM)                        | 512 GB                               | 4x Infiniband<br>NDR200 per node                                | Fat tree (with islands of 160 nodes full fat tree                                                                                                                                |
| Deucalion CPU<br>ARM | Fujitsu                 | Fujitsu A64FX<br>(2.0GHz,<br>48Core)              | 1632              | 78.336            | N/A                           | N/A                                                | 32GB (HBM2:<br>8GiB x4)              | Infiniband HDR100<br>Fat-Tree (blocking<br>factor of 1:1.6)     | 50 Gbps Internet connec-<br>tivity via GÉANT                                                                                                                                     |
| Deucalion CPU<br>X86 | Bull Sequana            | AMD EPYC 7742<br>(2.25GHz,64<br>Cores)            | 500               | 64.000            | N/A                           | N/A                                                | 256GB DDR4                           | Infiniband HDR100<br>Fat-Tree (non-block-<br>ing)               | 50 Gbps Internet connectivity via GÉANT                                                                                                                                          |
| Deucalion GPU        | Bull Sequana            | AMD EPYC 7742<br>(2.25GHz,64<br>Cores)            | 33                | 4.224             | 4                             | NVIDIA Ampere<br>A100 (40GB on<br>17 nodes and 80  | 512GB DDR4                           | 2x Infiniband<br>HDR200<br>Fat-Tree (non-block-                 | 50 Gbps Internet connectivity via GÉANT                                                                                                                                          |
| JUPITER Booster      | Bull Sequana            | NVIDIA Grace                                      | 6000              | 1728000           | 4                             | GB on 16 nodes)  NVIDIA GH200 Hopper Version       | 480                                  | ing)  NVIDIA Quantum-2 InfiniBand NDR DragonFly+ (200/400 Gb/s) | 800 Gb/s node-to-node<br>800 Gb/s compute to in-<br>ternet<br>100 Gb/s per login-to-in-<br>ternet (capped at 200<br>Gb/s accumulated DFN)<br>100 Gb/s per login-to-in-<br>ternet |

Table 5: General information about the offered systems, their file systems and job sizes

|                      | Home fil                    | e system                                                                                    | Work file                   | e system                  | Scratch fi                  | le system    | Backup   | Archive                    | Minimum re-<br>quired job size |
|----------------------|-----------------------------|---------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-----------------------------|--------------|----------|----------------------------|--------------------------------|
| System               | Туре                        | Capacity                                                                                    | Туре                        | Capacity                  | Туре                        | Capacity     | Capacity | Capacity                   | Nb of cores                    |
| Vega CPU             | Ceph                        | 100 GB                                                                                      | Ceph                        | On demand                 | Lustre                      | 20 GB        | -        | 0                          | 1 core                         |
| Vega GPU             | Ceph                        | 100 GB                                                                                      | Ceph                        | On demand                 | Lustre                      | 20 GB        | -        | 0                          | 1 GPU                          |
| MeluXina CPU         | Lustre                      | 4.2 PB on the<br>shared Tier2<br>Home-Project<br>filesystem used<br>as Work filesys-<br>tem | Lustre                      | 4.2 PB                    | Lustre                      | 229 TB       | 2.2 PB   | 1.5 PB                     | 128                            |
| MeluXina GPU         | Lustre                      | 4.2 PB on the<br>shared Tier2<br>Home-Project<br>filesystem used<br>as Work filesys-<br>tem | Lustre                      | 4.2 PB                    | Lustre                      | 229 TB       | 2.2 PB   | 1.5 PB                     | 64                             |
| Karolina CPU         | NFS                         | 31TB                                                                                        | NFS                         | 15PB                      | Lustre                      | 1361TB       | -        | 1500TB                     | 128                            |
| Karolina GPU         | NFS                         | 31TB                                                                                        | NFS                         | 15PB                      | Lustre                      | 1361TB       | -        | 1500TB                     | 16                             |
| Discoverer CPU       | NFS                         | 4.4 TB                                                                                      | Lustre                      | 2.1 PB                    | Lustre                      | 2.1 PB       | 0        | 0                          | 128                            |
| LUMI-C               | Lustre                      | 20GB/User                                                                                   | Lustre                      | 80PB                      | Lustre                      | 7PB (flash)  | -        | n.a                        | 1                              |
| LUMI-G               | Lustre                      | 20 GB/User                                                                                  | Lustre                      | 80 PB                     | Lustre                      | 9 PB (flash) | N/A      | N/A                        | 1 GPU                          |
| Leonardo DCGP        | Lustre                      | 50 GB/User                                                                                  | Lustre                      | 10 PB                     | Lustre                      | 41.4 PiB     | -        | 40 PB                      | 224                            |
| Leonardo Booster     | Lustre                      | 50 GB/User                                                                                  | Lustre                      | 10 PB                     | Lustre                      | 41.4 PiB     | -        | 40 PB                      | 32                             |
| MareNostrum5<br>GPP  | IBM Storage<br>Scale (GPFS) | 272 TB (40<br>GB/user)                                                                      | IBM Storage<br>Scale (GPFS) | 20 PB                     | IBM Storage<br>Scale (GPFS) | 154 PB       | 100 PB   | 40PB disk + 400PB<br>tapes | 112 (1 node)                   |
| MareNostrum5<br>ACC  | IBM Storage<br>Scale (GPFS) | 272 TB (40<br>GB/user)                                                                      | IBM Storage<br>Scale (GPFS) | 20 PB                     | IBM Storage<br>Scale (GPFS) | 160 PB       | 100 PB   | 40PB disk + 400PB tapes    | 64 (1 node)                    |
| Deucalion CPU<br>ARM | NFSv4                       | 39 TB (10<br>GB/user)                                                                       | Lustre                      | 9.9 PB (10<br>TB/project) | N/A                         | N/A          | N/A      | N/A                        | 48 (1 node)                    |

|                      | Home file system Work file system |                       | e system                                                     | Scratch file system                                        |                             | Backup   | Archive  | Minimum re-<br>quired job size |                |
|----------------------|-----------------------------------|-----------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------|----------|----------|--------------------------------|----------------|
| System               | Туре                              | Capacity              | Туре                                                         | Capacity                                                   | Туре                        | Capacity | Capacity | Capacity                       | Nb of cores    |
| Deucalion CPU<br>X86 | NFSv4                             | 39 TB (10<br>GB/user) | Lustre                                                       | 9.9 PB (10<br>TB/project)                                  | N/A                         | N/A      | N/A      | N/A                            | 64 (1 node)    |
| Deucalion GPU        | NFSv4                             | 39 TB (10<br>GB/user) | Lustre                                                       | 9.9 PB (10<br>TB/project)                                  | N/A                         | N/A      | N/A      | N/A                            | 4 GPU (1 node) |
| JUPITER Booster      | IBM Storage<br>Scale (GPFS)       | TBA                   | PROJECT in-<br>stead of WORK:<br>IBM Storage<br>Scale (GPFS) | PROJECT in-<br>stead of WORK:<br>4.1 PB (20<br>TB/project) | IBM Storage<br>Scale (GPFS) | ТВА      | ТВА      | N/A                            | 1 node         |



### **IMPORTANT REMARKS**

Applicants are strongly advised to apply to EuroHPC JU Benchmark and Development calls to collect relevant benchmarks and technical data for the system they wish to use through Regular Access, Extreme Scale Access, and the AI and Data-Intensive Applications Access.

More details on the websites of the centres:

IZUM (SI); Vega:

https://doc.vega.izum.si/

LUXPROVIDE (LU); MeluXina:

https://docs.lxp.lu

IT4INNVATIONS (CZ); Karolina:

https://www.it4i.cz/en/infrastructure/karolina https://docs.it4i.cz/karolina/introduction/

**SOFIA TECH (BG); Discoverer:** 

https://discoverer.bg

CSC (FI); LUMI:

https://www.lumi-supercomputer.eu/

CINECA (IT); Leonardo:

https://leonardo-supercomputer.cineca.eu/ https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4%3A+Leonardo+UserGuide

BSC (ES); MareNostrum5:

https://www.bsc.es/innovation-and-services/marenostrum/marenostrum-5

FCT (PT); Deucalion:

https://docs.deucalion.macc.fccn.pt/

JSC (DE); JUPITER:

https://www.fz-juelich.de/en/ias/jsc/jupiter



### 3. SUBSECTION FOR EACH SYSTEM

# 3.1. Vega, IZUM (SI)

HPC Vega is an Atos BullSequana XH2000 system able to deliver more than 6.9 PFLOPS of aggregated sustained performance. It comprises computer partitions with different computing characteristics, and two high-performance storage systems, one based on Lustre and another on Ceph. It consists of 1020 compute nodes with at least 256 GB of RAM, all together 130560 CPU cores. Sustained performance on all CPUs is 3.8 PFLOPS. 240 GPU accelerators with all together 829440 FP64 CUDA cores and 103680 Tensor cores perform up to 3.1 PFLOPS.

The **CPU partition** consists of 10 BullSequana XH2000 DLC racks, with:

- 768 standard compute nodes (within 256 blades), each node with:
  - 2 CPUs AMD EPYC Rome 7H12 (64c, 2.6GHz, 280W), 256GB of RAM DDR4-3200, 1x HDR100 single port mezzanine, 1x local 1.92TB M.2 SSD
- 192 large memory compute nodes (within 64 blades), each node with:
  - 2 CPUs AMD EPYC Rome (64c, 2.6GHz, 280W), 1TB of RAM DDR4-3200, 1xHDR100 single port mezzanine 1x 1.92TB M.2 SSD

The GPU partition consists of 2 BullSequana XH2000 DLC racks, with:

- 60 GPU nodes (60 blades), each node with:
  - 2 CPUs AMD EPYC Rome (64c, 2.6GHz, 280W), 512 GB of RAM DDR4-3200, local 1.92 TB M.2 SSD
  - 4x NVIDIA Ampere A100 PCIe GPU (3456 FP64 CUDA cores, 432 Tensor cores, Peak FP64 9.7 TFLOPS, FP64 Tensor Core 19.5 TFLOPS), each with 40 GB HBM2

# 3.2. MeluXina, LuxProvide (LU)

MeluXina is an Atos BullSequana XH2000 system able to deliver more than 12.8 Petaflops of aggregated sustained performance. It comprises computer partitions with different computing characteristics, three high-performance storage systems based on Lustre, and a Tape archival system. Hardware specifications – Compute environment:

- Cluster Module (CPU): 573 CPU nodes, each with:
  - o CPU: 2x AMD EPYC Rome 7H12 (64cores @ 2.6 GHz, 128 physical cores total)
  - o RAM: 512 GB DDR4-3200
  - o Interconnect: 1x HDR (200 Gbps InfiniBand)
  - No local storage
- Accelerator Module (GPU): 200 CPU-GPU hybrid nodes, each with:
  - o CPU: 2x AMD EPYC Rome 7452 (2x 32cores @ 2.35 GHz, 64 physical cores total)
  - o RAM: 512 GB DDR4-3200
  - o Accelerator: 4x Nvidia Ampere A100-40 (40GB HBM, NVlink)
  - o Interconnect: 2x HDR (200 Gbps InfiniBand, 400 Gbps in dual-rail)
  - o Local storage: 1.92TB SSD
- Accelerator Module (FPGA): 20 CPU-FPGA hybrid nodes, each with:
  - CPU: 2x AMD EPYC Rome 7452 (2x 32cores @ 2.35 GHz, 64 physical cores total)
  - o RAM: 512 GB DDR4-3200



Accelerator: 2x BittWare 520N-MX (Intel Stratix 10MX,16GB HBM)
 Interconnect: 2x HDR (200 Gbps InfiniBand, 400Gbps in dual-rail)

o Local storage: 1.92TB SSD

• Large Memory Module (CPU): 20 CPU nodes with extended memory capacity, each with:

o CPU: 2x AMD EPYC Rome 7H12 (64cores @ 2.6 GHz, 128 physical cores total)

o RAM: 4 TB DDR4-3200

o Interconnect: 2x HDR (200 Gbps InfiniBand, 400Gbps in dual-rail)

o Local storage: 1.92TB NVMe

# 3.3. Karolina, IT4Innovations (CZ)

Karolina is an HPE Apollo system able to deliver more than 9.5 Petaflops of aggregated LINPACK performance. It comprises computer partitions with different computing characteristics, and high-performance storage system based on Lustre.

- Universal partition (CPU) consists of 720 nodes. Every node features 2x AMD EPYC 7H12 processors, 128 cores and 256GB of memory per node. The nodes are connected to the Infiniband HDR network at 100Gb/s rate. Via the network, nodes can access the SCRATCH, HOME and PROJECT storage. The partition provides 2.84PF of double precision performance;
- The Accelerated partition (GPU) consists of 72 nodes. Every node features 2x AMD EPYC 7763 processors, 128 cores and 1024GB of memory per node. Every node contains 8 Nvidia A100 GPUs with 40GB of HBM2 memory, attached via Gen4 PCIe bus. The 8 accelerators are interconnected by an NVLINK2 fabric featuring NVSwitch technology. This enables 320GB of HBM2 memory addressable across the accelerators in unified virtual address space. The nodes are connected to the Infiniband HDR network with 4x200Gb/s links to achieve very high throughput to the network and the SCRATCH storage. The partition provides in total 576 A100 GPUs and 6.75PF of LINPACK performance.
- High performance SCRATCH storage The all flash SCRATCH storage provides 1361 TB capacity, 730GB/s write performance and 1198BG/s read performance and over 5M IOPS performance It is accessible via the Infiniband network and is available from all login and computational nodes. The SCRATCH is based on Lustre parallel filesystem and is intended for temporary scratch data generated during the calculation as well as for high-performance access to input and output files. Extended ACLs are provided for sharing data with other users using fine-grained control.

# 3.4. Discoverer, Sofia Tech (BG)

Discoverer is an Atos BullSequana XH2000 system able to deliver more than 4.5 Petaflops of aggregated sustained performance. It comprises computer one standard memory CPU partition, one large memory CPU partition and one high performance storage based on Lustre.

### Compute node design:

- CPU model: AMD EPYC 7H12, 64core, 2.6GHz, 280W; Next generation x86 "Zen2"
- CPU sockets per node: 2;
- CPU Cores per node: 128;
- Main memory per node: 256GB (Each of the 18x Fat nodes has 1024GB Memory)



- Memory type and frequency: 16GB DDR4 RDIMM 3200MT/s DR; (The fat nodes are equipped with 64GB DDR4 RDIMM 3200MT/s DR)
- Node DP TeraFlop/s peak: 5.325TFlops
- % DP TeraFlop/s peak vs Linpack: 74%;
- TFlop/s sustained Linpack: 3.940TFlops;
- Linpack node power consumption: 665.1 W per 256 GB compute node; 747.0 W per Fat compute node (Cooling subsystem power consumption excluded);
- Number and bandwidth of network interfaces: 1x 200Gbps HDR;

# 3.5. LUMI, CSC (FI)

LUMI is one of the three European pre-exascale supercomputers. It's an HPE Cray EX supercomputer consisting of several partitions targeted for different use cases. The largest partition of the system is the "LUMI-G" partition consisting of GPU accelerated nodes using a future-generation AMD Instinct GPUs. In addition to this, there is a smaller CPU-only partition, "LUMI-C" that features AMD EPYC "Milan" CPUs and an auxiliary partition for data analytics with large memory nodes and some GPUs for data visualization. Besides partitions dedicated to computation, LUMI also offer several storage partitions for a total of 119 PB of storage space.

#### • LUMI-C: The CPU Partition

The LUMI-C partition consists of 2048 compute nodes Each LUMI-C compute nodes are equipped with 2 AMD EPYC 7763 CPUs with 64 cores each running at 2.45 GHz for a total of 128 cores per node. The cores have support for 2-way simultaneous multithreading (SMT) allowing for up to 256 threads per node. The normal compute nodes in LUMI-C have 256 GB of memory, but there are also 128 nodes with 512 GB and 32 nodes with 1024 GB. Each compute node has one 200 Gbit/s network adapter.

### • LUMI-G: The GPU Partition

The LUMI-C partition provides the majority of the compute performance of LUMI. It consists of 2928 compute nodes. Each compute node has a single AMD 64 core CPU at 2.0 GHz and 512 GB of memory, the cores have support for 2-way simultaneous multithreading (SMT), however a number of cores are reserved for the operating system leaving 56 cores usable. Additionally each node has 4 MI250X GPUs, Each GPU has a total of 128 GB of HBM2e memory, and is presented to the user as two logical devices. Each node also has 4 network adapters each providing 200 Gbit/s of connectivity.

### LUMI-D: The Data Analytics Partition

LUMI-D is intended for interactive data analytics and visualization. It is also a good place run pre- and post-processing jobs that require a lot of memory. It consists of a 8 nodes with large memory capacity (4 nodes with 4 TB per node and 4 nodes with 8 TB per node) and 8 nodes with NVIDIA A40 GPUs. Each LUMI-D compute nodes are equipped with 2 AMD EPYC 7742 CPUs with 64 cores each running at 2.25 GHz for a total of 128 cores per node.

### LUMI-P and F: Parallel Filesystems

LUMI has two Lustre parallel file systems consisting of:

A main storage partition (LUMI-P) composed of 4 independent Lustre file systems with an aggregated performance of 240 GB/s and a 20 PB storage capacity each. Projects get assigned to one of these at project creation.

A flash storage partition (LUMI-F) optimized to support high IOPS rates with an aggregated performance in excess of 2000 GB/s and 9 PB of storage capacity



### • LUMI-O: The Object Storage

Object storage is a data storage architecture that manages data as objects instead of a file hierarchy. Each object includes the data, the metadata and a globally unique identifier. This partition may be used for storing, sharing and staging your data. It's based on Ceph and has a storage capacity of 30 PB.

# 3.6. Leonardo, CINECA (IT)

Leonardo is the new pre-exascale Tier-0 EuroHPC supercomputer hosted by CINECA and currently built in the Bologna Technopole, Italy. It is supplied by ATOS, based on a BullSequana supercomputer nodes. The used network is a Mellanox Infiniband HDR with DragonFly+ topology.

Leonardo will provide to users two main computing modules:

#### Leonardo Booster

The Leonardo Booster module, supplied by ATOS, is based on a BullSequana XH2135 "Da Vinci" blade architecture. It was designed to satisfy the most computational-demanding requirements in terms of *time-to-solution*, while optimizing the *energy-to-solution*. The system consists of about 3456 computing nodes (+16 login) each equipped with 4 NVIDIA custom Ampere A 100 GPU, Nvlink 3.0, 64GB, 512 GB of DDR4 RAM driven by a single Intel Xeon 8358 CPU at 2.6 GHz (32 cores per node), This partition provides a peak performance over 238 Pflops.

### • Leonardo Data Centric General Purpose (Leonardo DCGP)

The Leonardo Data Centric module is based on the BullSequana X2140 compute blade architecture by Atos. The partition aim is to satisfy a broader range of applications. It offers 1536 compute nodes (the login nodes are shared with the Booster module) each equipped with 2 Intel Sapphire Rapids SPR03-LC (56 cores per CPU, 112 per node), 512 GB of DDR5 RAM and 8 TB of NVMe.

### 3.7. MareNostrum5, BSC (ES)

MareNostrum5 is a pre-exascale EuroHPC supercomputer located in the BSC-CNS. The system is supplied by Bull SAS combining Bull Sequana XH3000 and Lenovo ThinkSystem architectures. The machine will combine 2 main partitions, one dedicated to general purpose applications MareNostrum 5 GPP and another one based in accelerators MareNotrum5 ACC.

### MareNostrum5 GPP

MareNostrum5 GPP is a General-purpose partition using Intel Sapphire Rapids CPUs (2xIntel Shappire Rapids 8480+ 2Ghz 56C, per node), with a peak performance of more than 45 PFlops, it is one of the biggest machines in the world for general-purpose workflows. The machine contains 6408 nodes with 112 cores each one. The ratio of memory is 2GB/core except for 216 nodes high mem that will provide up to 1024 GB (8GB/core).

The connectivity for parallel jobs and for the storage is based on Infiniband NDR200, in this case sharing the 200GB/s by 2 nodes (providing 100Gb/s per node)

### MareNostrum5 ACC



Marenostrum5 ACC is an accelerated partition using Intel Shappire Rapids CPU and Nvidia Hopper GPU (2xIntel Shappire Rapids 8460Y+ 2.3Ghz 32C, per node and 4 GPUs Nvidia Hopper 64GB HBM). The machine has a peak performance of more than 224PFlops and have 512 GB or main memory per node. The connectivity for parallel jobs and for the storage is based on Infiniband NDR200, the machine will provide 4xNDR200 per node, which sum up to 800GB/s per node.

### MareNostrum5 Storage

The Marenostrum5 machine will have a Spectrum Scale File system with up to 248PB distributed in different mount points. In addition, the system will have available an archive filesystem based in Spectrum Scale Archive with up to 40 PB of cache disk + 400PB using Tapes.

# 3.8. Deucalion, FCT (PT)

Deucalion is a petascale EuroHPC supercomputer located in Guimarães, Portugal. It is supplied by Fujitsu Technology Solutions, which combines a Fujitsu PRIMEHPC (ARM partition) and Atos Bull Sequana (x86 partitions). Deucalion is able to deliver more than 7.22 Petaflops of aggregated sustained performance and has a hybrid architecture with 2 computational clusters plus accelerated nodes with GPU.

Hardware specifications – Compute environment:

- ARM CPU: 1632 nodes, each with:
  - o CPU: 1x Arm A64FX (2.0GHz, 48 Cores)
  - o Memory: 32GiB (HBM2: 8GiB x4)
  - o Interconnect: 1x HDR (100 Gbps InfiniBand)
  - Local storage: 1 x M.2 SSD 512GB NVMe
- X86 CPU: Bull Seguana X440 A5, 500 nodes, each with:
  - o CPU: 2x AMD EPYC 7742 (2.25GHz, 64 Cores)
  - o RAM: 256 GB DDR4
  - o Interconnect: 1x HDR (100 Gbps InfiniBand)
  - o Local storage: 1x 480GB SSD
- X86 GPU: Bull Sequana X410 A5, 33 nodes, each with:
  - o CPU: 2x AMD EPYC 7742 (2.25GHz, 64 Cores)
  - o RAM: 512GB DDR4
  - o Accelerator: 4x Nvidia Ampere A100 NVlink (17 nodes with 40GB and 16 nodes with 80GB)
  - o Interconnect: 2x HDR (200 Gbps InfiniBand)
  - Local storage: 1 x 480GB SSD

### Storage:

- NetApp AFF A220 NAS subsystem with SSD 50 TB usable
- DDN EXAScaler Lustre PFS with HotPool NVME tier with 430 TB usable and 10 PB usable
   HDD Datapools with Aggregated Performance 340GB/s in reads, 260GB/s in writes



# 3.9. JUPITER, JSC (DE)

JUPITER (Joint Undertaking Pioneer for Innovative and Transformative Exascale Research) will be the first exascale supercomputer in Europe. Following the dynamic Modular System Architecture (dMSA) history implemented by JSC and other European partners in the course of the DEEP research projects, the JUPITER system will consist of two compute modules, a Booster and a Cluster Module. The first module – the Booster Module or short: the Booster – will deliver 1 ExaFLOP/s FP64 performance and will feature roughly 6000 compute nodes with the following configuration:

- 4 NVIDIA GH200 Superchips
- 72 ARM cores per chip, 288 ARM cores/node
- 4 NVIDIA GH100 with 96 GB HBM3 each
- NVIDIA Quantum-2 InfiniBand NDR Dragon-Fly+



# 4. GUIDELINES FOR FILLING-IN THE ONLINE FORM

# 4.1. Resource Usage

To apply for EuroHPC systems resources there is a minimum amount of node hours that has to be respected for all systems.

The amount of computing time has to be specified in node hours (or alternatively core hours) (wall clock time [hours]\*physical cores (nodes) of the machine applied for). It is the total number of node (core) hours to be consumed within the twelve months period of the project.

Please justify the number of node (core) hours you request by providing a detailed work plan and the appropriate technical data on the systems of interest. Applicants are strongly invited to apply to EuroHPC Benchmark and Development calls.

Once allocated, the project has to be able to start immediately and is expected to use the resources continuously and proportionally across the duration of the allocation.

When planning for access, please take into consideration that the effective system availability depends on the system and it should be about 80% of the total availability, due to queue times, possible system maintenance, upgrade and data transfer time.

Proposals are required to respect the minimum and maximum request of resources as indicated in on the EuroHPC JU website:

- Regular Access
- Extreme Scale Access
- Al and Data-Intensive Applications Access

### 4.2. Job Characteristics

This section describes technical specifications of simulation runs performed within the project.

### 4.2.1. Wall Clock Time

A simulation consists in general of several jobs. The wall clock time for a simulation is the total time needed to perform such a sequence of jobs. This time could be very large and could exceed the job wall clock time limits on the machine. In that case, the application has to be able to write checkpoints and the maximum time between two checkpoints has to be less than the wall clock time limit on the specified machine.



Table 6: Wall clock time

| Field in the online form                           | System          |                  | Maximum                                                                                                                              |                                                      |  |  |  |
|----------------------------------------------------|-----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
|                                                    |                 | Partition        | Nodes                                                                                                                                | Wall time                                            |  |  |  |
|                                                    |                 | CPU              | 960                                                                                                                                  | 2 days                                               |  |  |  |
|                                                    | Vega            | LARGEMEM         | 192                                                                                                                                  | 2 days                                               |  |  |  |
|                                                    |                 | LONGCPU          | 6                                                                                                                                    | 4 days                                               |  |  |  |
|                                                    |                 | GPU              | 60                                                                                                                                   | 4 days                                               |  |  |  |
| Wall clock time of one typical                     | MeluXina        | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
| simulation (hours)                                 | Karolina        | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
| <number></number>                                  | Discoverer      | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | LUMI            | -                |                                                                                                                                      |                                                      |  |  |  |
|                                                    | Leonardo        | 24 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | MareNostrum5    | 72 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | Deucalion       | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | JUPITER Booster | 24 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | Vega            | No               |                                                                                                                                      |                                                      |  |  |  |
|                                                    | MeluXina        | mechanism, and   | Applications need to support an internal checkpoint-rest mechanism, and the data needs to fit within the project's allocated storage |                                                      |  |  |  |
|                                                    | Karolina        | 25TB (may be inc | reased upon reque                                                                                                                    | est, see below)                                      |  |  |  |
|                                                    | Discoverer      | Yes              |                                                                                                                                      |                                                      |  |  |  |
| Able to write checkpoints                          | LUMI            | Yes              | Yes                                                                                                                                  |                                                      |  |  |  |
| <pre><check button=""></check></pre>               | Leonardo        | Yes              |                                                                                                                                      |                                                      |  |  |  |
|                                                    | MareNostrum5    | Yes              |                                                                                                                                      |                                                      |  |  |  |
|                                                    | Deucalion       |                  | Applications need to support an internal checkpoint-restar mechanism, and the data needs to fit within the project's                 |                                                      |  |  |  |
|                                                    | JUPITER Booster |                  | the data needs to                                                                                                                    | ernal checkpoint-restart<br>fit within the project's |  |  |  |
|                                                    | Vega            | N/A              |                                                                                                                                      |                                                      |  |  |  |
|                                                    | MeluXina        | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | Karolina        | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
| Maximum time between two                           | Discoverer      | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
| checkpoints (= maximum wall                        | LUMI            | 48 hours         |                                                                                                                                      |                                                      |  |  |  |
| clock time for a job) (hours)<br><number></number> | Leonardo        | 24 hours         |                                                                                                                                      |                                                      |  |  |  |
| THUITING!                                          | MareNostrum5    | Recommended 2    | 24 hours                                                                                                                             |                                                      |  |  |  |
|                                                    | Deucalion       | N/A              |                                                                                                                                      |                                                      |  |  |  |
|                                                    | JUPITER Booster | 24 hours         |                                                                                                                                      |                                                      |  |  |  |
|                                                    | JOLITER DOOSIGE | 24 110015        |                                                                                                                                      |                                                      |  |  |  |



# 4.2.2. Number of simultaneously running jobs

The next field specifies the number of independent runs which could run simultaneously on the system during normal production conditions. This information is needed for batch system usage planning and to verify if the proposed work plan is feasible during project run time.

Table 7: Number of simultaneously running jobs

| Field in the online form                                     | System          | Maximum                                                                                                                                                                    |
|--------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              | Vega            | 50                                                                                                                                                                         |
|                                                              | MeluXina        | Generally: maximum 100 jobs per user<br>Some job types allow a maximum of 1 job per user for high priority<br>testing, interactive development and non-scalable executions |
|                                                              | Karolina        | Max. queued: no limit<br>Max. running: 1296                                                                                                                                |
| Number of jobs that can run simultaneously <number></number> | Discoverer      | 512                                                                                                                                                                        |
|                                                              | LUMI            | Varies                                                                                                                                                                     |
|                                                              | Leonardo        | Varies                                                                                                                                                                     |
|                                                              | MareNostrum5    | Depending on the system load                                                                                                                                               |
|                                                              | Deucalion       | Depending on the system load                                                                                                                                               |
|                                                              | JUPITER Booster | 128 per user, 24 in low/no cont                                                                                                                                            |

### 4.2.3. Job Size

The next fields describe the job resource requirements, which are the number of cores (nodes) and the amount of main memory. These numbers have to be defined for three different job classes (with minimum, average, or maximum number of cores/nodes).

Please note that the values stated in the table below are absolute minimum requirements, allowed for small jobs, which should only be applicable to a small share of the requested computing time. **Typical production jobs should run at larger scale.** 

Job sizes must be a multiple of the minimum number of cores (nodes) in order to make efficient use of the architecture.



#### **IMPORTANT REMARKS**

For Extreme Scale Access call and Regular Access call please provide explicit scaling data of the codes you plan to work with in your project at least up to the minimum number of physical cores required by the specified site (see table below) using input parameters comparable to the ones you will use in your project (a link to external websites, just referencing other sources or "general knowledge" is not sufficient). Generic scaling plots provided by vendors or developers do not necessarily reflect the actual code behaviour for the simulations planned. Scaling benchmarks need to be representative of your study case and need to support your resource request on every system of interest. Application to EuroHPC Benchmark and Development calls is strongly recommended. Missing technical data (scaling, etc.) may result in proposal rejection.

For the Al and Data-Intensive Applications Access call please provide code performance data, including GPU usage and efficiency tests, if applicable, provide scaling plots demonstrating code scalability on the requested system. Note that the software performance must be clearly linked to the justification of the computing resources requested.



Table 8: Job size

| Field in the online form     | System          | Minimum (cores)                                                            |
|------------------------------|-----------------|----------------------------------------------------------------------------|
|                              | Vega            | 1                                                                          |
|                              |                 | CPU and Large Memory nodes: 128 cores GPU and FPGA nodes: 64               |
|                              | MeluXina        | cores + all accelerators on the same node                                  |
|                              | 17 12           | Karolina CPU : 128 cores                                                   |
|                              | Karolina        | Karolina GPU :16 cores + 1xA100                                            |
| Expected job configuration   | Discoverer      | 64 cores                                                                   |
| (Minimum)                    |                 | LUMI-C 128 cores (1 core on special partitions)                            |
| <number></number>            | LUMI            | LUMI-G 4 Accelerators (1 on special partitions)                            |
|                              |                 | Leonardo Booster: 32 cores (1 nodes)                                       |
|                              | Leonardo        | Leonardo DCGP: 224 cores (2 nodes)                                         |
|                              | MareNostrum5    | 1 full node per partition                                                  |
|                              | Deucalion       | 1 full node per partition                                                  |
|                              | JUPITER Booster | 1 full node                                                                |
|                              | Vega            | 512                                                                        |
|                              | Vega            | CPU nodes: 1024 cores (8 nodes)                                            |
|                              |                 | LargeMemory nodes: 128 cores (1 node)                                      |
|                              | MeluXina        | GPU nodes: 256 cores (4 nodes, 16 GPU accelerators)                        |
|                              |                 | FPGA nodes: 64 cores (1 node, 2 FPGA accelerators)                         |
|                              |                 | Karolina CPU: 1024 cores                                                   |
| Expected number of cores     | Karolina        | Karolina GPU :128 cores + 8xA100                                           |
| (Average)                    | Discoverer      | 512 cores                                                                  |
| <number></number>            | LUMI            | Multiple nodes                                                             |
| Trumber>                     | LOTTI           | Leonardo Booster: > 640 cores (20 nodes, using 1 or more jobs at the       |
|                              | Leonardo        | same time)                                                                 |
|                              |                 | Leonardo DCGP: > 64 nodes                                                  |
|                              | MareNostrum5    | On demand                                                                  |
|                              | Deucalion       | Dependent on queue                                                         |
|                              | JUPITER Booster | On demand                                                                  |
|                              |                 | 65536                                                                      |
|                              | Vega            |                                                                            |
|                              |                 | Maximums per job: For the default QOS, maximum 25% of each partition size. |
|                              |                 | CPU nodes: 17920 cores (140 nodes)                                         |
|                              | MeluXina        | LargeMemory nodes: 640 cores (5 nodes)                                     |
|                              |                 | GPU nodes: 3200 cores (50 nodes)                                           |
|                              |                 | FPGA nodes: 320 cores (5 nodes)                                            |
|                              |                 | Karolina CPU: 92160 cores                                                  |
| Expected number of cores     | Karolina        | Karolina GPU :9216 cores + 576xA100                                        |
| (Maximum)                    | Discoverer      | 3072 cores                                                                 |
| <pre><number></number></pre> | Discovered      | LUMI-C 512 nodes -> 65536 cores (more by special arrangement)              |
| -Hullipel>                   | LUMI            | LUMI-G 1024 nodes (more by special arrangement)                            |
|                              |                 | Leonardo Booster: 8192 cores (256 nodes, 1024 GPUs, more could             |
|                              |                 | be possible, but only if approved by the hosting site and only for few     |
|                              | Leonardo        | jobs per projects)                                                         |
|                              |                 | Leonardo DCGP: TBD (order of magnitude: 10000 cores, 90 nodes)             |
|                              | MareNostrum5    | On demand                                                                  |
|                              | Deucalion       | Dependent on queue                                                         |
|                              | JUPITER Booster | Up to the full system                                                      |
|                              | JOFITER BOOSTEI | Op to the full system                                                      |



### **ADDITIONAL INFORMATION:**

### **Vega**

Slurm partitions information: <a href="https://doc.vega.izum.si/slurm-partitions/">https://doc.vega.izum.si/slurm-partitions/</a>

### MeluXina

Job scheduling is done with node-level granularity, by default users have exclusive access to allocated nodes and all of their resources.

Compute nodes have hyperthreading enabled and HT cores are available by default to user jobs. Time limits, job sizes and priorities are set through SLURM Quality of Service (QOS) configurations. Specific SLURM reservations are available for rapid prototyping and interactive development, accessible through dedicated QOS.

### Karolina

**DATA Analytics:** The Data analytics partition consists of a single HPE Superdome Flex node. The SMP node features 32 high end Intel Xeon 8268 processors with 24 cores each, amounting to 768 AVX-512 capable cores. The processors are equipped with 768GB of DDR4 memory and interconnected in an all-to-all topology by high speed internal network, thus providing over 24000 GB of shared memory. Further, the node is connected to the network and storage by 2x HDR network interfaces, with aggregated throughput of 400Gb/s. The Data analytics partition is intended to support huge memory jobs.

**VISUALIZATON Nodes:** Karolina includes two nodes for remote visualization via VirtualGL 2 and TurboVNC 2. Every node features 2x AMD EPYC 7452 processors, 64 cores and 256GB of memory and NVIDIA Quadro RTX6000 graphics card with OpenGL support. The nodes are connected to the Infiniband HDR network at 2x100Gb/s rate.

**HOME Storage:** The HOME storage is a small, 25TB storage to keep user home directories and configuration files. It is NFS based and accessible from all Karolina nodes.

**PROJECT Storage:** The PROJECT storage is an external, high capacity file storage available to the Karolina supercomputer. The storage is attached to the Karolina via dedicated gateways, providing up to 15PB capacity at an aggregated performance of 39GB/s and 57kIOPS. The PROJECT storage provides space for semi-permanent user data for the duration of user projects.

**DICE B2SAFE:** Long term safe storage EUDAT B2SAFE service is locally provided and integrated with the Karolina supercomputer. B2SAFE is a way to distribute and store large volumes of data for a long-term to those sites which are providing powerful data processing, analysis and data access facilities. The service is iRODS based and includes tools to set data management policies across different geographical and administrative domains in a trustworthy manner. Also, it allows to make data objects referenceable via globally unique persistent identifiers.



### **Leonardo Booster**

To apply for Leonardo Booster use of **GPUs is a must**. Scalability, performance and technical data have to be sufficient to justify the resource request. We will accept benchmarks performed only on very similar machines. In any case the scalability at least up to the same number of GPUs to be used for production runs must be reported. A detailed description of the method used to estimate the requested budget must be reported.

### **JUPITER Booster**

Computing time projects on JUPITER Booster include storage resources on \$HOME, \$SCRATCH and \$PROJECT. In case you would like to access other file systems you need to apply separately for a data project. For further information on available file systems and on data projects, please visit

https://apps.fz-juelich.de/jsc/hps/just/filesystems.html#best-practice-notes https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects



Table 9: Memory requirements

| Field in the online form                  | System          | Maximum                                                                                                                                                                   |
|-------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Vega            | 1 GB per core                                                                                                                                                             |
|                                           | MeluXina        | CPU, GPU and FPGA nodes: 512 GB (main memory per node) GPU nodes: 160 GB HBM2 (aggregated GPU accelerator memory per node) LargeMemory nodes: 4 TB (main memory per node) |
| Memory (Minimum job) <number></number>    | Karolina        | Karolina CPU: 256 GB<br>Karolina GPU: 1024 GB                                                                                                                             |
| Trainis of                                | Discoverer      | 2 GB/core                                                                                                                                                                 |
|                                           | LUMI            | LUMI-C 256 GB per node (less on special partitions)<br>LUMI-G 512 GB per node (less on special partitions)                                                                |
|                                           | Leonardo        | No requirements                                                                                                                                                           |
|                                           | MareNostrum5    | Up to 2GB/core                                                                                                                                                            |
|                                           | Deucalion       | No requirements                                                                                                                                                           |
|                                           | JUPITER Booster | 480 GB per node                                                                                                                                                           |
|                                           | Vega            | 2 GB per core                                                                                                                                                             |
|                                           | MeluXina        | Memory scaled to an expected average per job of: 8 CPU nodes, 4 GPU nodes, 1 LargeMemory and 1 FPGA node                                                                  |
| Memory (Average job)                      | Karolina        | Karolina CPU: 256 GB<br>Karolina GPU: 1024 GB                                                                                                                             |
| <number></number>                         | Discoverer      | 128 GB                                                                                                                                                                    |
|                                           | LUMI            | -                                                                                                                                                                         |
|                                           | Leonardo        | No requirements                                                                                                                                                           |
|                                           | MareNostrum5    | Up to 2GB/core                                                                                                                                                            |
|                                           | Deucalion       | No requirements                                                                                                                                                           |
|                                           | JUPITER Booster | 480 GB per node                                                                                                                                                           |
|                                           | Vega            | 8 GB per core                                                                                                                                                             |
|                                           | MeluXina        | For the default job type, memory scaled to the maximum number of nodes per job depending on node type: 140 CPU nodes, 50 GPU nodes, 5 LargeMemory and 5 FPGA nodes        |
|                                           | Karolina        | Karolina CPU: 256 GB<br>Karolina GPU: 1024 GB                                                                                                                             |
|                                           | Discoverer      | 1024 GB                                                                                                                                                                   |
| Memory (Maximum job)<br><number></number> | LUMI            | 2 GB per core (4/8/32/64 GB/core on special partitions)                                                                                                                   |
|                                           | Leonardo        | 482 GB per node                                                                                                                                                           |
|                                           | MareNostrum5    | Up to 2GB per core (8GB/core on 216 high-mem nodes)                                                                                                                       |
|                                           | Deucalion       | CPU ARM: 32 GB per node<br>CPU X86: 256 GB per node<br>GPU: 512 GB per node                                                                                               |
|                                           | JUPITER Booster | 480 GB per node                                                                                                                                                           |



# 4.3. Storage

### 4.3.1. General remarks

The storage requirements have to be defined for four different storage classes (Scratch, Work, Home and Archive).

- Scratch acts as a temporary storage location (job input/output, scratch files during computation, checkpoint/restart files; no backup; automatic remove of old files for most systems except for MeluXina (scratch storage is a faster data tier with no automatic file removal, projects can use it as their main storage area)).
- Work acts as project storage (large results files, no backup)
  - For MeluXina, the project storage data tier can be backed up for projects requesting it.
     MeluXina has a dedicated Backup data tier, in addition to Archival (off-site, tape-based) storage.
  - For Karolina, the storage can only be used to backup data (simulation results) during project's lifetime.
- **Home** acts as repository for source code, binaries, libraries and applications with small size and I/O demands (source code, scientific results, important restart files; has a backup (not applicable for Discoverer)).
- **Archive** acts as a long-term storage location, typically data reside on tapes. For EuroHPC projects also archive data have to be removed after project end. The storage can only be used to backup data (simulation results) during project's lifetime.
- **Project** acts as a storage location for data to be shared between all members of a computing time project, for example, source code, binaries, libraries and applications.

Data in the archive is stored on tapes on most systems. Do not store thousands of small files in the archive, use container formats (e.g., tar) to merge files (ideal size of files: 500 – 1 000 GB). Otherwise, you will not be able to retrieve back the files from the archive within an acceptable period of time (for retrieving one file about 2 minutes time (independent of the file size!) + transfer time (dependent of file size) are needed)! Additional data archive specifications of certain systems:

- Vega Archive is not provided and data is not stored on tapes, some additional disc space can be provided on request.
- **MeluXina** the Archive tier is not user-accessible. Data backup to the archival storage is defined based on the request of project, and is an automated process.
- **Karolina** Third party archive storage should be used, such as national archive, EOSC or the EUDAT services. Long term safe storage EUDAT B2SAFE service is locally provided and integrated with the Karolina supercomputer.
- JUPITER ARCHIVE must be applied for separately via data projects at JSC



### **IMPORTANT REMARKS**

All data must be removed from the execution system within a period defined per centre after the end of the project. Data removal period per system is the following:

- **Vega** 2 months
- Karolina 12 months
- MeluXina 1 month
- **Discoverer** 2 months
- **LUMI** 2 months
- **Leonardo** 6 months
- MareNostrum5 2 months
- **Deucation** 2 months
- JUPITER 3 months

### 4.3.2. Total Storage

The value asked for is the maximum amount of data needed at a time. Typically, this value varies over the project duration of 12 months (or yearly basis in case of continuations or 2-year projects). **The number in brackets in the "Max per project" column is an extended limit, which is only valid if the project applicant contacted the centre beforehand for approval.** 



Table 10: Storage requirements

| Field in the online form                                                                                         | System          | Maximum per project                    | Remarks                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  | Vega            | 1 TB                                   |                                                                                                                                                                                                         |
|                                                                                                                  | MeluXina        | No maximum capacity is set per project | Projects are allocated storage (max data & max inodes) based on their request and the available capacity relative to the access track.                                                                  |
| Total storage (Scratch) <number></number>                                                                        | Karolina        | 700 TB                                 | Default safety quota 20TB, increased<br>by hosting entity upon request, short<br>term burst limit up to 90% of free ca-<br>pacity (about 700TB)                                                         |
| Typical use: Scratch files during simulation, log files, check-                                                  | Discoverer      | 1-50 TB                                | Scratch and Work partitions are combined on Discoverer                                                                                                                                                  |
| points                                                                                                           | LUMI            | 500 TB                                 | 90 day retention                                                                                                                                                                                        |
| Lifetime: Duration of jobs and between jobs                                                                      | Leonardo        | No quota                               | Without backup, automatic clean-up procedure for files older than 40 days (time interval can be reduced in case of critical usage ratio of the area. In this case, users will be notified via HPC-News) |
|                                                                                                                  | MareNostrum5    | On demand                              | 90 days retention policy                                                                                                                                                                                |
|                                                                                                                  | Deucalion       | N/A                                    |                                                                                                                                                                                                         |
|                                                                                                                  | JUPITER Booster | 200 TB                                 | 90 days retention policy, no backup                                                                                                                                                                     |
|                                                                                                                  | Vega            | 100 TB                                 |                                                                                                                                                                                                         |
| Total storage (Work) <number>  Typical use: Result and large input files  Lifetime: Duration of project</number> | MeluXina        | No maximum capacity is set per project | Projects are allocated storage (max data & max inodes) based on their request and the available capacity relative to the access track                                                                   |
|                                                                                                                  | Karolina        | 2500TB                                 | Default quota 20TB, may be increased by beforehand approval by allocation entity and the hosting entity up to 2500TB                                                                                    |
|                                                                                                                  | Discoverer      | 1-50 TB                                | Scratch and Work partitions are combined on Discoverer                                                                                                                                                  |
|                                                                                                                  | LUMI            | 20 GB/user                             |                                                                                                                                                                                                         |
| Litetime: Duration of project                                                                                    | Leonardo        | 50 GB                                  | Permanent/backed up, user specific, local                                                                                                                                                               |
|                                                                                                                  | MareNostrum5    | 40 GB/user                             |                                                                                                                                                                                                         |
|                                                                                                                  | Deucalion       | 10 TB                                  |                                                                                                                                                                                                         |
|                                                                                                                  | JUPITER Booster |                                        | We offer PROJECT instead (see below)                                                                                                                                                                    |
| <del></del>                                                                                                      | Vega            | 10 TB per user                         |                                                                                                                                                                                                         |
| Total storage (Home) <number></number>                                                                           | MeluXina        | 100 GB per user                        |                                                                                                                                                                                                         |
| Typical use: Source code and scripts                                                                             | Karolina        | 1000 GB                                | Default quota 20 GB, may be increased by beforehand approval by the hosting entity up to 1000 GB                                                                                                        |
| Lifetime: Duration of project                                                                                    | Discoverer      | 100 GB                                 |                                                                                                                                                                                                         |
| Ensume. Daration of project                                                                                      | LUMI            | 20 GB/user                             |                                                                                                                                                                                                         |
|                                                                                                                  | 1               |                                        |                                                                                                                                                                                                         |



| Field in the online form                                           | System          | Maximum per project                                                             | Remarks                                                                                                                                                     |
|--------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | Leonardo        | 50 GB                                                                           | Permanent/backed up, user specific, local                                                                                                                   |
|                                                                    | MareNostrum5    | 40 GB/user                                                                      |                                                                                                                                                             |
|                                                                    | Deucalion       | 10 GB/user                                                                      |                                                                                                                                                             |
|                                                                    | JUPITER Booster | 20 GB/user                                                                      |                                                                                                                                                             |
|                                                                    | Vega            | 0 TB                                                                            |                                                                                                                                                             |
|                                                                    | MeluXina        | Evaluated on demand                                                             | Projects are allocated archival-level backup storage (max data & max nodes) based on their request and the available capacity relative to the access track. |
|                                                                    | Karolina        | N/A                                                                             | Limits set by external Archive service providers                                                                                                            |
| <number> Total storage (Object storage) <number></number></number> | Discoverer      | N/A                                                                             | No archive partition installed or supported                                                                                                                 |
|                                                                    | LUMI            | N/A                                                                             |                                                                                                                                                             |
|                                                                    | Leonardo        | 0.5 PB per project (more is possible, but depending on the available resources) | No backup                                                                                                                                                   |
|                                                                    | MareNostrum5    | On demand                                                                       |                                                                                                                                                             |
|                                                                    | Deucalion       | N/A                                                                             |                                                                                                                                                             |
|                                                                    | JUPITER Booster |                                                                                 | ARCHIVE must be applied for separately via data projects at JSC                                                                                             |
| Total storage (Fast scratch)                                       | LUMI            | 100 TB                                                                          | 30 Days data retention                                                                                                                                      |
| <number></number>                                                  | JUPITER Booster | 50TB                                                                            | 30 Days data retention (TBD)                                                                                                                                |
| Total storage (Object storage)<br><number></number>                | LUMI            | Not decided yet                                                                 | LUMIs object storage is expected to be available during the fall of 2022                                                                                    |
| Total storage (Project storage)<br><number></number>               | JUPITER Booster | 20 TB                                                                           | Lifetime: Duration of project                                                                                                                               |

When requesting more than the specified scratch disk space and/or larger than 1 TB a day and/or storage of more than 4 million files (204 million files for Karolina), please justify this amount and describe your strategy concerning the handling of data (pre/post processing, transfer of data to/from the production system, retrieving relevant data for long-term). If no justification is given the project will be proposed for rejection. This is not applicable to MeluXina.

If you request more than 100 TB (20 TB for Karolina) of disk space, please contact <u>the HPC centre</u> before submitting your proposal in order to check whether this can be realized.

### 4.3.3. Number of Files

In addition to the specification of the amount of data, the number of files also has to be specified. If you need to store more files, the project applicant must contact the centre beforehand for approval.



Table 11: Number of files

| Field in the online form                                                                                                                                                       | System          | Maximum             | Remarks                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                | Vega            | 4 M                 |                                                                          |
|                                                                                                                                                                                | MeluXina        | 1 M                 | Default limit increased on demand and depending on available capacity    |
|                                                                                                                                                                                | Karolina        | 20 000 000          |                                                                          |
| Number of files (Scratch)                                                                                                                                                      | Discoverer      | 65 536              | Scratch and Work partitions are combined on Discoverer                   |
| <number></number>                                                                                                                                                              | LUMI            | 2000 k              |                                                                          |
|                                                                                                                                                                                | Leonardo        | No quota            |                                                                          |
|                                                                                                                                                                                | MareNostrum5    | 8 M                 |                                                                          |
|                                                                                                                                                                                | Deucalion       |                     |                                                                          |
|                                                                                                                                                                                | JUPITER Booster | TBA                 | 90 days retention policy, no backup                                      |
|                                                                                                                                                                                | Vega            | 4 M                 |                                                                          |
|                                                                                                                                                                                | MeluXina        | 1 M                 | Default limit increased on demand and depending on available capacity    |
|                                                                                                                                                                                | Karolina        | 20 000 000          |                                                                          |
| umber of files (Scratch) number>  umber of files (Work) number>  umber of files (Home) number>  umber of files (Fast scratch) number>  umber of files (Object storage) number> | Discoverer      | 65 536              | Scratch and Work partitions are combined on Discoverer                   |
| <number></number>                                                                                                                                                              | LUMI            |                     |                                                                          |
|                                                                                                                                                                                | Leonardo        | No quota            |                                                                          |
| Number of files (Work) (number> Number of files (Home) (number)                                                                                                                | MareNostrum5    | 4 M                 |                                                                          |
|                                                                                                                                                                                | Deucalion       | 1M                  |                                                                          |
|                                                                                                                                                                                | JUPITER Booster | JSC offers P        | ROJECT instead (see below)                                               |
|                                                                                                                                                                                | Vega            | 1 M                 |                                                                          |
|                                                                                                                                                                                | MeluXina        | 100 000             |                                                                          |
|                                                                                                                                                                                | Karolina        | 500 000             |                                                                          |
|                                                                                                                                                                                | Discoverer      | 86400               |                                                                          |
|                                                                                                                                                                                | LUMI            | 100 k               |                                                                          |
| <number></number>                                                                                                                                                              | Leonardo        | No quota            |                                                                          |
|                                                                                                                                                                                | MareNostrum5    | 100 k               |                                                                          |
|                                                                                                                                                                                | Deucalion       | 100 k               |                                                                          |
|                                                                                                                                                                                | JUPITER Booster | 80,000              |                                                                          |
|                                                                                                                                                                                | Vega            | 0                   |                                                                          |
|                                                                                                                                                                                | MeluXina        | Evaluated on demand |                                                                          |
|                                                                                                                                                                                | Karolina        | N/A                 | Limits set by external Archive service providers                         |
| Number of files (Archive)                                                                                                                                                      | Discoverer      | N/A                 | No archive partition installed or supported                              |
| <number></number>                                                                                                                                                              | LUMI            |                     |                                                                          |
|                                                                                                                                                                                | Leonardo        | TBD                 |                                                                          |
|                                                                                                                                                                                | MareNostrum5    | 1 M                 |                                                                          |
|                                                                                                                                                                                | Deucalion       |                     |                                                                          |
|                                                                                                                                                                                |                 | ARCHIVE must be app | olied for separately via data projects at JSC                            |
| Number of files (Fast scratch)                                                                                                                                                 | LUMI            | 1000k               |                                                                          |
| STRUTTDET?                                                                                                                                                                     | JUPITER Booster | TBA                 |                                                                          |
| Number of files (Object storage) <number></number>                                                                                                                             | LUMI            | Not decided yet     | LUMIs object storage is expected to be available during the fall of 2022 |
| Number of files (Project storage)                                                                                                                                              | JUPITER Booster | 3 million           | Lifetime: Duration of project                                            |
|                                                                                                                                                                                |                 |                     | 1                                                                        |



# 4.4. Data Transfer

For planning network capacities, applicants have to specify the amount of data which will be transferred from the machine to another location. Field values can be given in Tbyte or Gbyte.

Reference values are given in the following table. A detailed specification would be desirable: e.g., distinguish between home location and other EuroHPC sites.

Please state clearly in your proposal the amount of data which needs to be transferred after the end of your project to your local system. Missing information may lead to rejection of the proposal.

Be aware that <u>transfer of large amounts of data</u> (e.g. tens of TB or more) <u>may be challenging or even unfeasible due to limitations in bandwidth and time. Larger amounts of data have to be transferred continuously</u> during project's lifetime.

Alternative strategies for transferring larger amounts of data at the end of projects have to be proposed by users (e.g. providing tapes or other solutions) and arranged with the technical staff.



Table 12: Data transfer requirements

| Field in the online form                                               | System          | Maximum                                                                                                                          |  |
|------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                        | Vega            | 500 GB per day                                                                                                                   |  |
|                                                                        | MeluXina        | 1000 TB/day assuming full utilization of a single 100Gbps link through the GEANT network                                         |  |
|                                                                        | Karolina        | 500 TB/day                                                                                                                       |  |
|                                                                        | Discoverer      | 1 TB/day                                                                                                                         |  |
|                                                                        | LUMI            | No enforced limit                                                                                                                |  |
| Amount of data transferred to/from production system <number></number> | Leonardo        | 0.5 TB/day per project (more it is possible, e.g. up to 2 TB/day, but a detailed plan for moving the data needs to be re-ported) |  |
|                                                                        | MareNostrum5    | No enforced limit, but can be limited if the usage affects other users                                                           |  |
|                                                                        | Deucalion       | No enforced limit, but can be limited if the usage affects other users                                                           |  |
|                                                                        | JUPITER Booster | No enforced limit, but can be limited if the usage affects other users                                                           |  |

If one or more specifications above is larger than a reasonable size (e.g., more than tens of TB data or more than 1TB a day) the applicants must describe their strategy concerning the handling of data in a separate field (pre/post-processing, transfer of data to/from the production system, retrieving relevant data for long-term). In such a case, the application is in principle considered as I/O intensive.

### 4.5. I/O

Parallel I/O is advised but not mandatory for applications running on EuroHPC systems. Therefore, the applicant should describe how parallel I/O is implemented (checkpoint handling, usage of I/O libraries, MPI I/O, Netcdf, HDF5 or other approaches). Also, the typical I/O load of a production job should be quantified (I/O data traffic/hour, number of files generated per hour). For the Karolina system, the users should also quantify in addition to the mentioned requirements, the total volume and throughput GB/s.



# ANNEX 1 – AVAILABLE RESOURCES VIA BENCHMARK ACCESS

The contributing sites and the corresponding computer systems for the **Benchmark Access** call are listed in the table below.

Table 13: Available systems and resources for the Benchmark Access call

| System            | Architecture                                     | Site (Country)                     | Fixed allocation (node hours) | Storage hours (TiB hours) |
|-------------------|--------------------------------------------------|------------------------------------|-------------------------------|---------------------------|
| Vega CPU          | BullSequana XH2000                               | IZUM Maribor (SI)                  | 2,000                         | n/a                       |
| Vega GPU          | BullSequana XH2001                               | IZUM Maribor (SI)                  | 400                           | n/a                       |
| Karolina CPU      | HPE Apollo 2000Gen10<br>Plus and HPE Apollo 6500 | VSB-TUO, IT4Innova-<br>tions, (CZ) | 2,000                         | n/a                       |
| Karolina GPU      | HPE Apollo 2000Gen10<br>Plus and HPE Apollo 6500 | VSB-TUO, IT4Innova-<br>tions, (CZ) | 400                           | n/a                       |
| MeluXina CPU      | BullSequana XH2004                               | LuxProvide (LU)                    | 2,000                         | n/a                       |
| MeluXina GPU      | BullSequana XH2005                               | LuxProvide (LU)                    | 400                           | n/a                       |
| MeluXina FPGA     | BullSequana XH430 AS                             | LuxProvide (LU)                    | 600                           | n/a                       |
| Discoverer CPU    | BullSequana XH2000                               | Sofiatech, (BG)                    | 2,000                         | n/a                       |
| Discoverer GPU    | BullSequana XH2001                               | Sofiatech, (BG)                    | 200                           | n/a                       |
| LUMI-C            | HPE Cray EX                                      | CSC (FI)                           | 2,000                         | 65,000                    |
| LUMI-G            | HPE Cray EX                                      | CSC (FI)                           | 2,500                         | 65,000                    |
| Leonardo DCGP     | BullSequana X2610 compute blade                  | CINECA (IT)                        | 2,000                         | n/a                       |
| Leonardo Booster  | BullSequana XH21355<br>"Da Vinci" blade          | CINECA (IT)                        | 3,500                         | n/a                       |
| MareNostrum5 GPP  | Lenovo ThinkSystems<br>SD650                     | BSC (ES)                           | 2,500                         | n/a                       |
| MareNostrum5 ACC  | Atos BullSequana EX3000                          | BSC (ES)                           | 2,000                         | n/a                       |
| MareNostrum5 HBM  | Lenovo ThinkSystems                              | BSC (ES)                           | 2,000                         | n/a                       |
| Deucalion CPU ARM | Fujitsu PRIMEHPC FX700                           | FCT (PT)                           | 2,000                         | n/a                       |
| Deucalion CPU X86 | BullSequana X440 A5                              | FCT (PT)                           | 2,000                         | n/a                       |
| Deucalion GPU     | Bull Sequana X410 A5                             | FCT (PT)                           | 200                           | n/a                       |



# ANNEX 2 – AVAILABLE RESOURCES VIA DEVELOPMENT ACCESS

The contributing sites and the corresponding computer systems for the <u>Development Access</u> call are listed in the table below.

Table 14: Available systems and resources for the Development Access call

| System            | Architecture                                     | Site (Country)                     | Fixed allocation (node hours) | Storage hours (TiB hours) |
|-------------------|--------------------------------------------------|------------------------------------|-------------------------------|---------------------------|
| Vega CPU          | BullSequana XH2000                               | IZUM Maribor (SI)                  | 4,000                         | n/a                       |
| Vega GPU          | BullSequana XH2001                               | IZUM Maribor (SI)                  | 800                           | n/a                       |
| Karolina CPU      | HPE Apollo 2000Gen10<br>Plus and HPE Apollo 6500 | VSB-TUO, IT4Innova-<br>tions, (CZ) | 4,000                         | n/a                       |
| Karolina GPU      | HPE Apollo 2000Gen10<br>Plus and HPE Apollo 6500 | VSB-TUO, IT4Innova-<br>tions, (CZ) | 800                           | n/a                       |
| MeluXina CPU      | BullSequana XH2004                               | LuxProvide (LU)                    | 4,000                         | n/a                       |
| MeluXina GPU      | BullSequana XH2005                               | LuxProvide (LU)                    | 800                           | n/a                       |
| MeluXina FPGA     | BullSequana XH430 AS                             | LuxProvide (LU)                    | 1,100                         | n/a                       |
| Discoverer CPU    | BullSequana XH2000                               | Sofiatech, (BG)                    | 4,500                         | n/a                       |
| Discoverer GPU    | BullSequana XH2001                               | Sofiatech, (BG)                    | 450                           | n/a                       |
| LUMI-C            | HPE Cray EX                                      | CSC (FI)                           | 4,000                         | 130,000                   |
| LUMI-G            | HPE Cray EX                                      | CSC (FI)                           | 4,500                         | 130,000                   |
| Leonardo DCGP     | BullSequana X2610 compute blade                  | CINECA (IT)                        | 4,000                         | n/a                       |
| Leonardo Booster  | BullSequana XH21355<br>"Da Vinci" blade          | CINECA (IT)                        | 4,500                         | n/a                       |
| MareNostrum5 GPP  | Lenovo ThinkSystems<br>SD650                     | BSC (ES)                           | 4,500                         | n/a                       |
| MareNostrum5 ACC  | Atos BullSequana EX3000                          | BSC (ES)                           | 3,500                         | n/a                       |
| MareNostrum5 HBM  | Lenovo ThinkSystems                              | BSC (ES)                           | 4,000                         | n/a                       |
| Deucalion CPU ARM | Fujitsu PRIMEHPC FX700                           | FCT (PT)                           | 4,000                         | n/a                       |
| Deucalion CPU X86 | BullSequana X440 A5                              | FCT (PT)                           | 3,000                         | n/a                       |
| Deucalion GPU     | Bull Sequana X410 A5                             | FCT (PT)                           | 400                           | n/a                       |



# **LIST OF TABLES**

| Table 1: Available systems and resources offers for the Regular Access call                            | 2  |
|--------------------------------------------------------------------------------------------------------|----|
| Table 2: Available systems and resources offers for the Extreme Scale Access call                      | 3  |
| Table 3: Available systems and resources offers for the AI and Data-Intensive Applications Access call | 4  |
| Table 4: General information about the offered systems, their memory and network capabilities          | 6  |
| Table 5: General information about the offered systems, their file systems and job sizes               | 8  |
| Table 6: Wall clock time                                                                               | 18 |
| Table 7: Number of simultaneously running jobs                                                         | 19 |
| Table 8: Job size                                                                                      | 21 |
| Table 9: Memory requirements                                                                           | 24 |
| Table 10: Storage requirements                                                                         | 27 |
| Table 11: Number of files                                                                              | 29 |
| Table 12: Data transfer requirements                                                                   | 31 |
| Table 13: Available systems and resources for the Benchmark Access call                                | 32 |
| Table 14: Available systems and resources for the Development Access call                              | 33 |