SEA GROWTH ACUATIA A FF4EuroHPC Project Experiment

Partners

Insuiña S.L. is a subsidiary of the Grupo Nueva Pescacnova corporation, specialised in the cultivation of turbot. Deicom Technologies is an SME and Data Analysis solutions provider employing Big Data and Al technologies. Geneaqua is an SME providing genetic analysis solutions. CESGA is a public HPC centre providing services for R&D.

End Users

The challenge

Improvement of productivity in aquaculture

In aquaculture, fish growth and mortality are affected by highly volatile environmental conditions such as tides, temperature, salt levels, and water nutrients. This can result in losses to businesses of millions of Euros. Improving the ability of aquaculture farms to handle volatility and thereby increase productivity requires the centralised and rapid analysis of millions of productive, genetic, environmental, and biological data.

Analysis of millions of data

Improving the ability of aquaculture farms to handle volatility and thereby **increase productivity** requires the centralised and rapid analysis of millions of productive, genetic, environmental, and biological data.

GENETIC DATA

ENVIRONMENTAL

DATA

BIOLOGICAL DATA

The solution: ACUATIA

Artificial intelligence applied to the whole growth and farming techniques.

Security ACUATIA is an AI based tool where each of the processes and environmental conditions are modeled using AI predictors, which are trained on the abundant data present in the production databases.

Non-HPC approach: deeply analytical, few long trainings in conventional machines.

					unitariad de la corriente		
imple Predictor completo	— Datos externos	Ν	Media de la salinidad del mar		Wedla verocidad de la com		
actuales	Media temperatura del mar		45		/		
	16						
	- Enfermedades			Vibriosis	Preventivo Philasterides		
	Aeromona	Enteromyum	Philasterides	0	0		
ión típica	0	0	0 Tenacibaculum	Costia	Otras		
	Amebas	Microsporidios	0	0	0		
ensidad	0	U					
6							
tre densidades	- Resultado		Patologias Cre	cimiento		1800	
	25			\wedge		1000	
que						1570	
~						1000	
	20				Peso: 1		
ro v					Edad: 85 dias lp:-0,61	1400	
					Patologia: 20		
						1200	
	15						
futuros							
radaala							
redecir						800	
Imentación	10						
redecir Imentación	10						
Imentación	10					600	
redecir Imentación emperatura tanque	5					600	
Imentación Imperatura tanque	5					600	
redecir Imentación emperatura tanque	5					600	
redecir Imentación Imperatura tanque Calcular	5					- 600 - 400 - 200	
edecir mentación mperatura tanque Calcular	10 5 0 35					600 400 200	
edecir mentación nperatura tanque Calcular	10 5 0 35	40	45	50	55	600 -400 -200	

HPC has enhanced ACUATIA, a DEICOM fish farm software

HPC enables a deeper exploration of the numerical approach to process modeling. The AI predictive models can be trained more extensively, the hyperparameters can be fine-tuned and the datasets can be bigger.

Impact

The food industry is challenged to feed a growing world population of 8 billion.

Precision aquaculture contributes significantly to a healthy human diet while improving animal welfare in the farms, reducing food waste, and avoiding overexploitation of marine resources.

Business impact

for aquaculture is direct and significant: he faster growth of the fish through optimized aquaculture management means that the appropriate sales-weight is reached 2 months earlier.

Positive environmental impact

the reduction of the sale age by 2 months leads to a proportional reduction in saltwater consumption, oxygen usage, and electricity consumption.

Comercial impact

furthermore, because of the new accurate and faster growth predictions, the commercial department has more reliable information about the fish that they can offer to their customers and stock breaks (highly undesirable) are prevented.

Benefits

30%

improvement in fish growth and a related 6.5% cost savings for the end user.

know-how

reduction in predictive model error through HPC.

50%

Shortening time to production in new user facilities or new procedures by 50%.

Increasing business know-how for datadriven decisions for aquaculture farmers.

Long term benefits from FF4EuroHPC support

- Sefore using HPC there were a lot of human work for filtering and analyzing data looking for best parameters to train new models. Each test phase took many hours of classical computation and human analysis.
- The automated and deep analysis that resulted from the FF4EuroHPC experiment led to a better understanding of the predictors and long term improvements in the capabilities of the ACUATIA tool.
- Solutional analysis service providers can improve predictive models, error results, and time reduction to producing new custom predictive tools.
- Solution analysis service providers can adopt the approach taken in this experiment to enhance their service offerings through improved predictive capabilities and faster development of customized predictive tools.

Thank you so much for your attention!

Gabriel González Fernández gabriel@deicom-technologies.com

Technology, our passion; your challenges our reason for being.

Rúa de Urzáiz, 38, 1C, 36201 (Vigo) (+34) 886 312 510

info@deicom-technologies.com