Euro FIPC USER DAY 22 - 23 October 2024

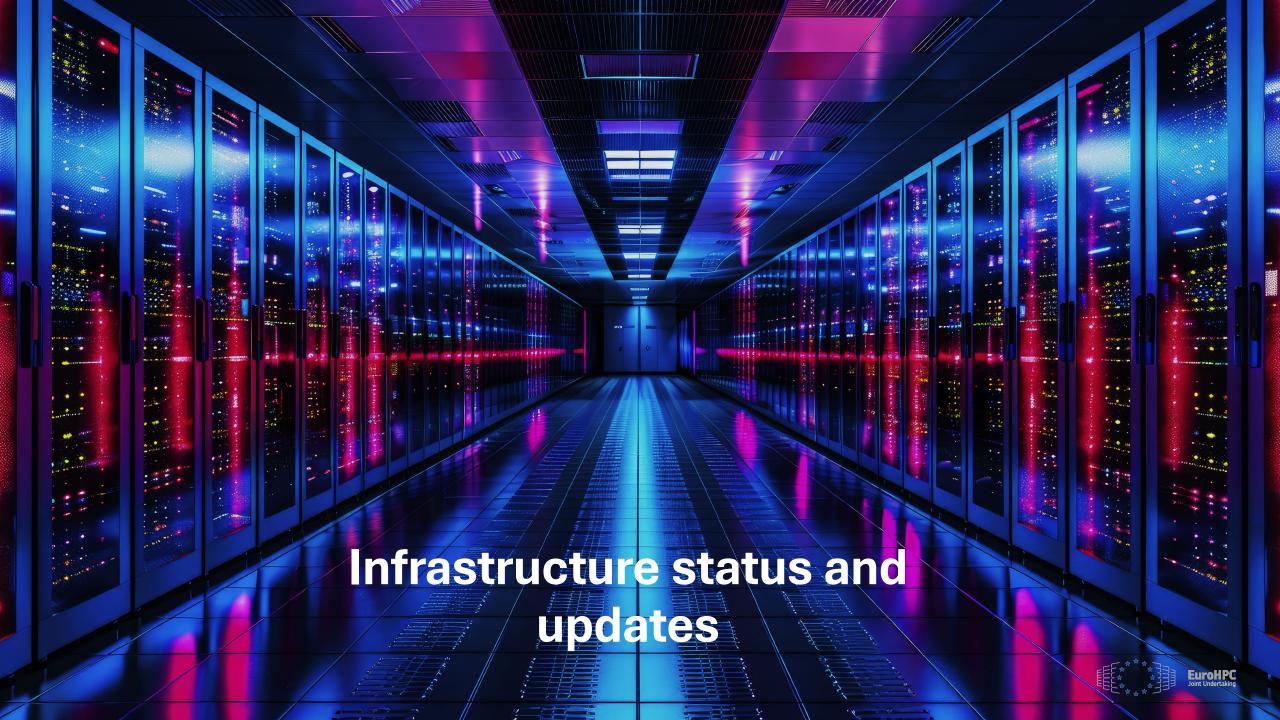
Joint Undertaking

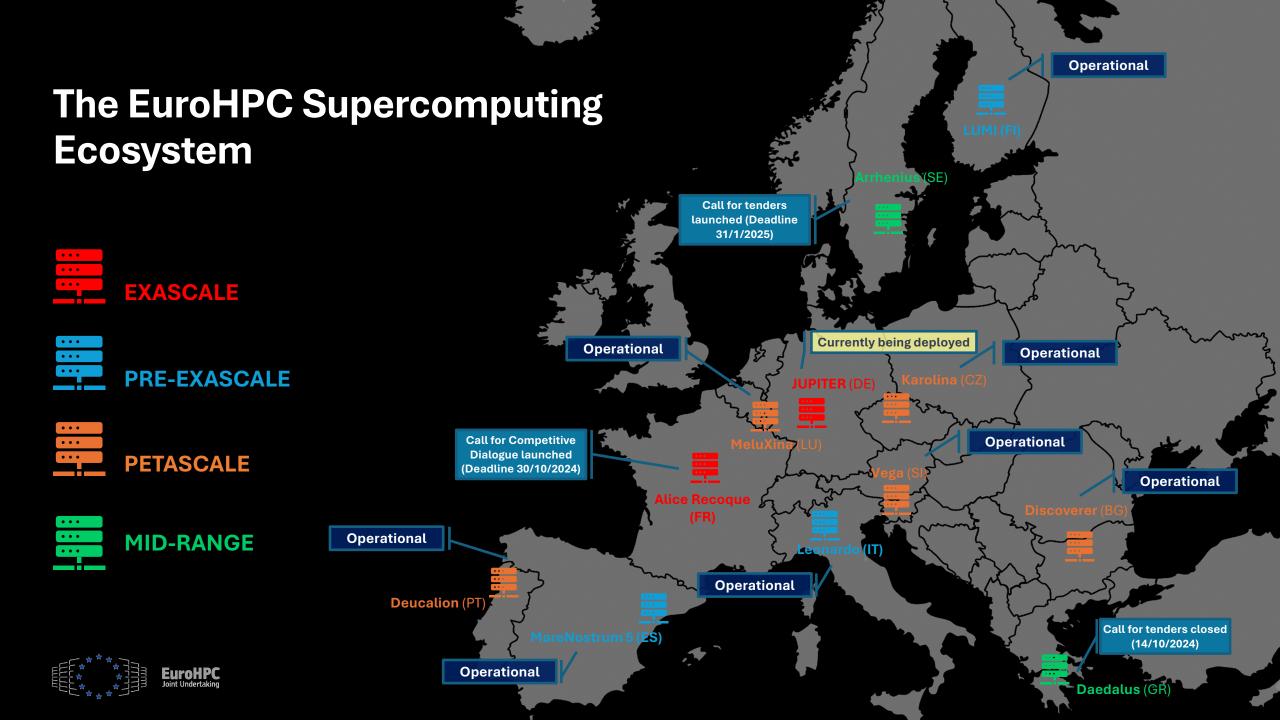
Overview

INFRASTRUCTURE PROCUREMENT

SUPERCOMPUTERS

ACCESS TO SUPERCOMPUTERS




ACCESS MODES

PEER-REVIEW PROCESS

Infrastructure updates PRE-EXASCALE AND PETASCALE SYSTEMS

LISA – UPGRADE OF LEONARDO

Call launched on 18 September 2024

Closing date on 8 November 2024

Project start in March 2025

- The targeted system architecture is designed to address new evolving user needs involving <u>AI</u> workloads in the user workflows
- In conjunction with the HPC capacity of Leonardo, <u>LISA will offer an AI-optimised</u> <u>partition</u>, complementing the computing service portfolio of the whole infrastructure

DISCOVERER+

- Hardware deliveries expected mid-October 2024
- GPU installation planned in November 2024

Infrastructure updates EXASCALE SYSTEMS

JUPITER

- First deliveries of the modular data centre (MDC) on site
- JUPITER Research and Early Access Program (JUREAP) ongoing
- JEDI (JUPITER Exascale Development Instrument) installed and benchmarked in May - #1 in Green500 – To be offered through the Early Access Program

ALICE RECOQUE

Call for Participation to the Competitive Dialogue published on 9 September 2024

Deadline for submissions: 30 October 2024

Modular system targeting to support traditional HPC, AI training workloads, combination of HPC with AI inference workflows

Infrastructure updates MID-RANGE SYSTEMS

DAEDALUS

Call for tenders closed 14 October 2024

- Modular system (accelerated + CPU partitions)
- Target installation date Q4 2025

ARRHENIUS

Call for tenders open until 31 January 2025

The system is divided into several specialized capabilities, each with dedicated storage to optimize performance for different types of workloads:

- HPC CPU Module
- HPC GPU Module
- Sensitive Data Capability
- Persistent Compute and Data Services Capability (PCD)

Access modes OVERVIEW

- ✓ Allocations for 12 months
- ✓ Predefined minimum resource request and overall offer per cut-off
- √ 2 cut-offs per year

- √ Allocations for 12 months
- Predefined resources per partition
- ✓ Bi-monthly cut offs
- ✓ Allocations for up to 12 months
- ✓ Predefined resources per partition
- ✓ Monthly cutoffs

Extreme-Scale Access

For high-impact and high gain innovative research applications, with very large compute time, data storage and support needs.

Regular Access

For research and public sector applications requiring large-scale resources or frequent access to substantial computing and storage resources.

Al and Data-Intensive Applications Access

For industry, SMEs, startups, and public sector entities requiring access to supercomputing resources to perform artificial intelligence and data-intensive activities.

Development Access

For researchers and developers requiring a small number of node hours to develop, test and optimize their applications prior to applying for access.

Benchmark Access

Allows researchers and application developers to test or benchmark their applications.

WHO IS ELIGIBLE?

Principal Investigators and
Team Members affiliated with
organizations located in
countries associated to Horizon
2020

Industrial enterprises and SMEs Academic and research institutions (public and private)

Public sector organizations

Open to all fields of research

en to all

Access modes

CUT-OFFS TIMELINE

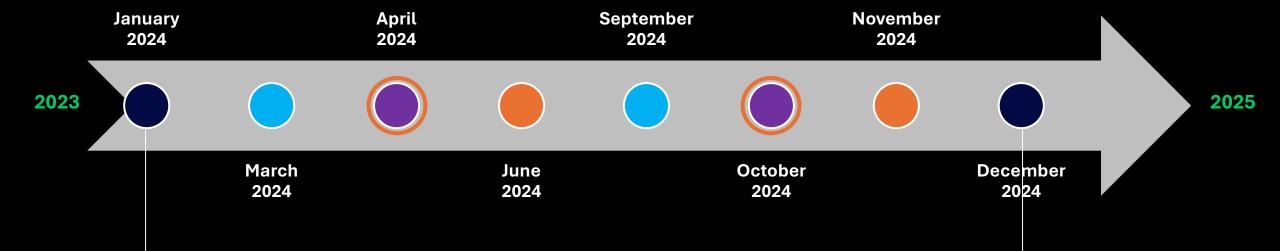
REGULAR ACCESS:

- December 2021
- March 2022
- July 2022
- November 2022
- March 2023
- July 2023
- November 2023
- March 2024
- September 2024 (under evaluation)

EXTREME SCALE ACCESS:

- December 2022
- May 2023
- October 2023
- April 2024
- October 2024 (under evaluation)

AI AND DATA INTENSIVE APPLICATIONS ACCESS:


- April 2024
- June 2024
- October 2024 (under evaluation)

UPCOMING CUT-OFFS IN 2024/2025:

EXTREME SCALE ACCESS – April 2025 (exact date TBD)

REGULAR ACCESS – March 2025 (exact date TBD)

AI AND DATA INTENSIVE APPLICATIONS ACCESS – 22 November 2024

Benchmark and Development monthly cut-offs (12 per year)

Peer-Review Process EXTREME SCALE ACCESS

Evaluation criteria:

Excellence
Innovation and Impact
Quality and Efficiency of the Implementation

Scoring system:

- Grade **0-5** per criterium
- Minimum grade per criterium 3
- Overall grade sum **0-15**
- Overall grade sum minimum 10

ACCESS TRACKS:

SCIENTIFIC

INDUSTRY

PUBLIC ADMINISTRATION

Access available on pre-exascale systems

Peer-Review Process REGULAR ACCESS

Access available on

petascale and

pre-exascale systems

Evaluation criteria:

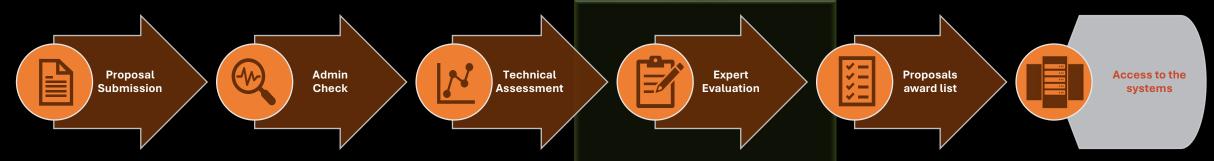
Excellence
Innovation and Impact
Quality and Efficiency of the Implementation

Scoring system:

- Grade **0-5** per criterium
- Minimum grade per criterium 3
- Overall grade sum **0-15**
- Overall grade sum minimum 10

ACCESS TRACKS:

SCIENTIFIC


INDUSTRY

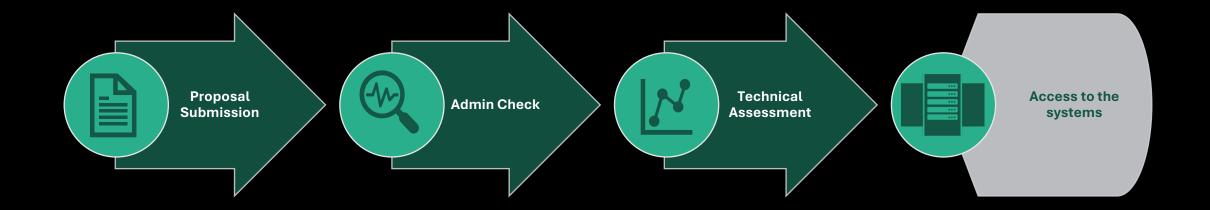
PUBLIC ADMINISTRATION

Peer-Review Process

AI AND DATA INTENSIVE APPLICATIONS ACCESS

Access available on GPU partitions of petascale and pre-exascale systems

Evaluation criteria:


Excellence
Innovation and Impact
Quality and Efficiency of the
Implementation

Scoring system:

- Grade **0-5** per criterium
- Minimum grade per criterium
 -3
- Overall grade sum **0-15**
- Overall grade sum minimum 10

Peer-Review Process BENCHMARK AND DEVELEOPMENT ACCESS

Access available on petascale and pre-exascale systems

Evaluation process INVOLVED ACTORS

THANK YOU!

Evaluations of proposals' technical feasibility

Technical experts:

Computing centre representatives

Technical reviewers

ACCESS RESOURCE
COMMITTEE
ESTABLISHMENT IN
2024/2025

Evaluations of proposals' scientific excellence, innovation and impact, quality and efficiency

Committee Chairs

Domain Panel Chairs

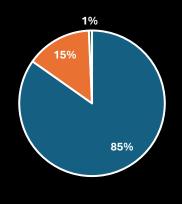
Rapporteurs

External reviewers

Evaluation process ADVICE FOR APPLICANTS

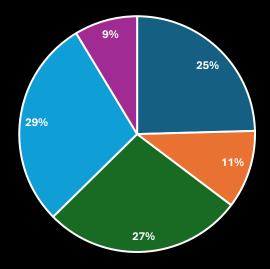
- Consult the EuroHPC JU website for updates
- Respect the cut-off dates and deadlines
- Use correct, up-to-date proposal templates
- Perform scalability tests on time on the preferred system
- For technical concerns contact the HPC centers
- Submit your Final Reports on time
- Take the Committee comments into consideration

Apply via:


https://access.eurohpcju.europa.eu/

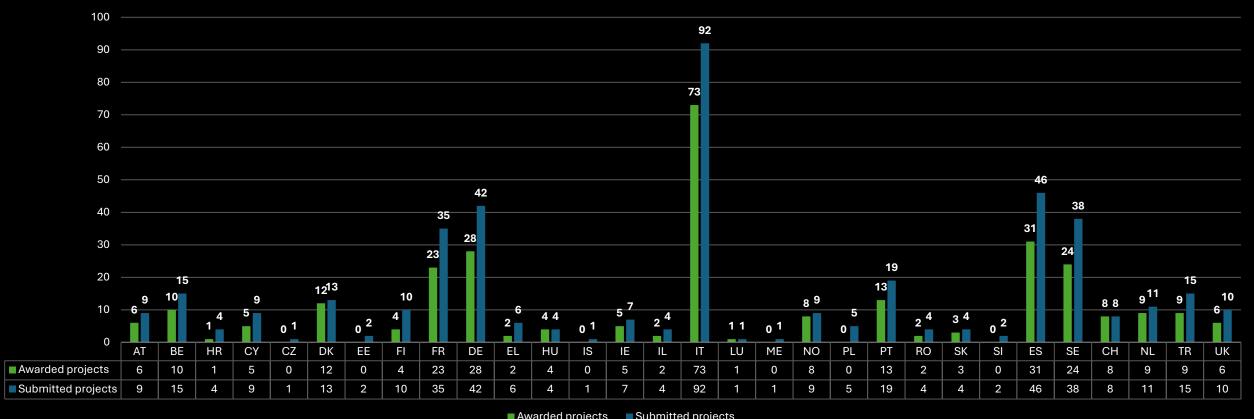
Access calls statistics OVERALL STATISTICS

AWARDED RESOURCES PER ACCESS MODE							
ACCESS CALL	PROPOSALS AWARDED	NODE HOURS AWARDED					
EXTREME SCALE ACCESS (Dec 2022- Apr 2024)	75	63,113,698					
REGULAR ACCESS (Dec 2021-Mar 2024)	189	25,698,394					
AI AND DATA INTENSIVE APPLICATIONS ACCESS (Apr 2024-Jun 2024)	25	1,033,500					
TOTAL	289	89,845,592					


All calls for production activities - PI gender distribution - awarded projects

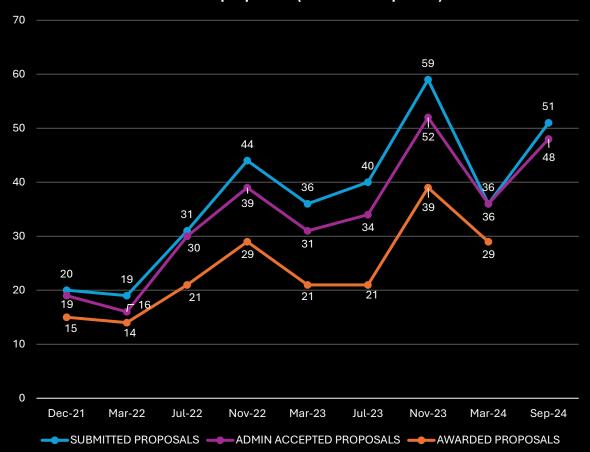
■ Male ■ Female ■ Unspecified

All calls for production activities - research domains distribution - awarded projects

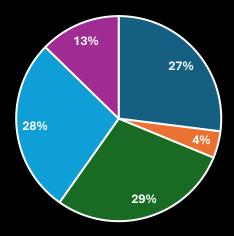


- Chemical Sciences and Materials, Solid State Physics
- Earth System Sciences & Environmental Studies
- Engineering, Mathematics and Computer Sciences
- \blacksquare Computational Physics: Universe Sciences, Fundamental Constituents of Matter
- Biochemistry, Bioinformatics, Life Sciences, Physiology and Medicine

Access calls statistics **OVERALL STATISTICS**

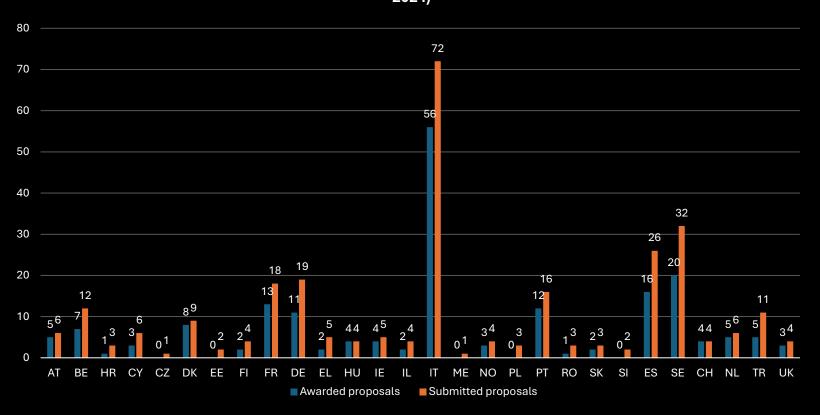


All calls for production activities - PI affiliation countries distribution - awarded vs submitted proposals numbers


Access calls statistics REGULAR ACCESS

Regular Access - Submitted vs administratively accepted vs awarded proposals (Dec 2021-Sep 2024)

Regular Access - Research domains distribution of awarded proposals (Dec 2021-Mar 2024)



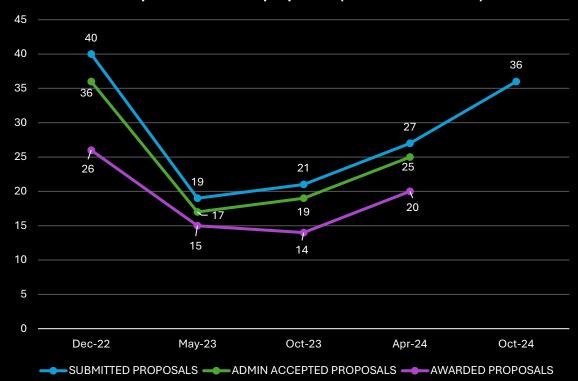
- Chemical Sciences and Materials, Solid State Physics
- Earth System Sciences & Environmental Studies
- Engineering, Mathematics and Computer Sciences
- Computational Physics: Universe Sciences, Fundamental Constituents of Matter
- Biochemistry, Bioinformatics, Life Sciences, Physiology and Medicine

Access calls statistics REGULAR ACCESS

Regular Access - PI affiliation countries distribution - proposal numbers (Dec 2021-Mar 2024)

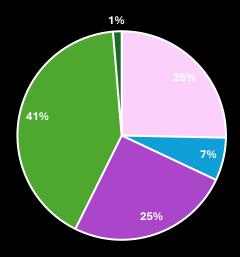
PROPOSAL NUMBERS PER COUNTRY - PI AFFILIATIONS								
COUNTRY	COUNTRY		NO OF SUBMITTED PROJECTS					
Austria	AT	5	6					
Belgium	BE	7	12					
Croatia	HR	1	3					
Cyprus	CY	3	6					
Czechia	CZ	0	1					
Denmark	DK	8	9					
Estonia	EE	0	2					
Finland	Fl	2	4					
France	FR	13	18					
Germany	DE	11	19					
Greece	EL	2	5					
Hungary	HU	4	4					
Ireland	IE	4	5					
Israel	IL	2	4					
Italy	IT	56	72					
Montenegro	ME	0	1					
Norway	NO	3	4					
Poland	PL	0	3					
Portugal	PT	12	16					
Romaina	RO	1	3					
Slovakia	SK	2	3					
Slovenia	SI	0	2					
Spain	ES	16	26					
Sweden	SE	20	32					
Switzerland	СН	4	4					
The Netherlands	NL	5	6					
Türkiye	TR	5	11					
United Kingdom	UK	3	4					
TOTA	\L	189	285					

Access calls statistics REGULAR ACCESS


	AWARDED RESOURCES (NODE HOURS) ACROSS ALL CUT-OFFS												
Cut-offs	Vega CPU	Vega GPU	MeluXina CPU	MeluXina GPU	Karolina CPU	Karolina GPU	Discoverer CPU	LUMI-C	LUMI-G	Leonardo Booster	Leonardo DCGP	MareNostru m5 GPP	MareNostru m5 ACC
Dec-21	328,125	31,923	0	173,325	177,344	0	156,250	1,865,234	0	0	0	0	0
Mar-22	882,160	7,813	0	147,344	151,563	0	135,240	281,142	0	0	0	0	0
Jul-22	1,102,710	104,688	122,200	227,600	273,438	56,250	0	1,343,281	0	0	0	0	0
Nov-22	508,049	29,688	468,750	163,705	392,896	49,297	890,625	2,488,506	0	0	0	0	0
Mar-23	763,573	0	493,753	125,781	468,750	46,875	990,005	0	0	0	0	0	0
Jul-23	451,650	15,866	110,000	174,650	86,240	21,828	325,000	177,000	288,807	296,810	53,177	36,938	0
Nov-23	604,400	50,000	511,719	190,320	493,900	48,000	1,096,000	386,500	547,520	300,563	140,000	38,724	286,404
Mar-2024	619,804	0	358,303	105,000	316,075	0	194,531	252,986	386,000	630,000	337,800	228,000	90,000
Total	5,260,471	239,978	2,064,725	1,307,725	2,360,205	222,250	3,787,651	6,794,650	1,222,327	1,227,373	530,977	303,662	376,404

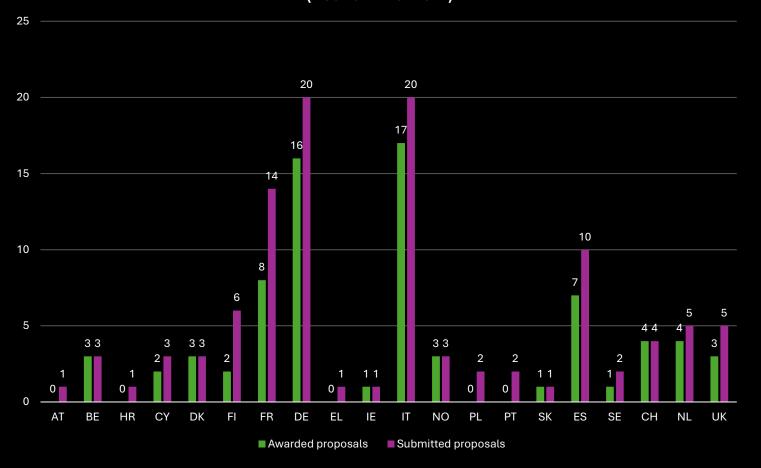
HPC Centre	Core hours awarded	Node hours awarded		
IZUM (SI)	704,057,247	5,500,447		
IT4I (CZ)	330,554,171	2,582,454		
SofiaTech (BG)	484,819,274	3,787,651		
LuxProvide (LU)	385,800,563	3,372,450		
CSC (FI)	921,970,288	8,016,977		
CINECA (IT)	98,745,360	1,758,350		
BSC (ES)	46,055,000	680,065		
TOTAL	2,972,001,903	25,698,394		

25 million node hours awarded via the Regular Access call


Access calls statistics EXTREME SCALE ACCESS

Extreme Scale Access - Submitted vs administratively accepted vs awarded proposals (Dec 2022-Oct 2024)

Extreme Scale Access - Research domains distribution of awarded proposals (Dec 2022-Apr 2024)



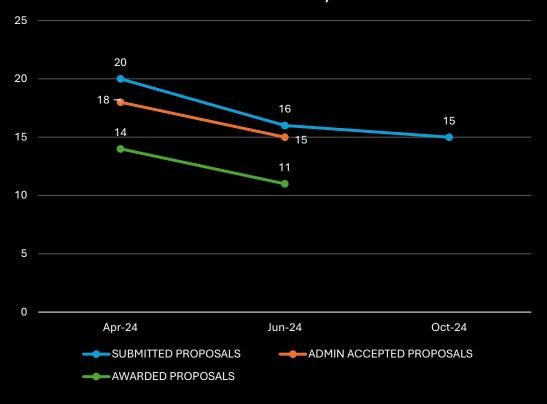
- Chemical Sciences and Materials, Solid State Physics
- Earth System Sciences & Environmental Studies
- Engineering, Mathematics and Computer Sciences
- $\blacksquare \ Computational \ Physics: Universe \ Sciences, Fundamental \ Constituents \ of \ Matter$
- Biochemistry, Bioinformatics, Life Sciences, Physiology and Medicine

Access calls statistics EXTREME SCALE ACCESS

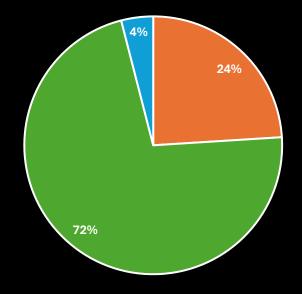
Extreme Scale Access - PI affiliation countries distribution - proposal numbers (Dec 2022-Mar 2024)

PROPOSAL NUMBERS PER COUNTRY – PI AFFILIATIONS								
COUNTRY	COUNTRY CODE	NO OF AWARDED PROJECTS	NO OF SUBMITTED PROJECTS					
Austria	AT	0	1					
Belgium	BE	3	3					
Croatia	HR	0	1					
Cyprus	CY	2	3					
Denmark	DK	3	3					
Finland	FI	2	6					
France	FR	8	14					
Germany	DE	16	20					
Greece	EL	0	1					
Ireland	IE	1	1					
Italy	IT	17	20					
Norway	NO	3	3					
Poland	PL	0	2					
Portugal	PT	0	2					
Slovakia	SK	1	1					
Spain	ES	7	10					
Sweden	SE	1	2					
Switzerland	СН	4	4					
The Netherlands	NL	4	5					
United Kingdom	UK	3	5					
TOTAL		75	107					

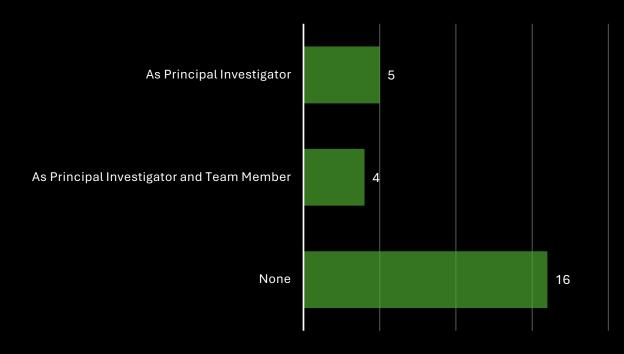
Access calls statistics EXTREME SCALE ACCESS

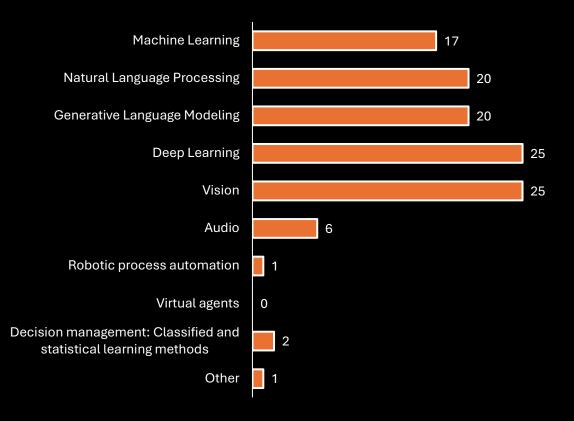

	AWARDED RESOURCES ACROSS ALL CUT-OFFS IN CORE AND NODE HOURS											
			CORE H	HOURS					NODE	HOURS		
Cut-offs	Leonardo DCGP	Leonardo Booster	LUMI-C	LUMI-G	MareNostrum 5 GPP	MareNostrum 5 ACC	Leonardo DCGP	Leonardo Booster	LUMI-C	LUMI-G	MareNostrum 5 GPP	MareNostrum 5 ACC
Dec 2022	0	200,000,000	826,700,000	689,000,000	0	0	0	6,250,000	6,458,594	10,765,625	0	0
May 2023	0	144,659,008	436,667,904	505,024,000	0	38,063,648	0	4,520,594	3,411,468	7,891,000	0	1,189,489
Oct 2023	0	112,400,224	249,973,376	273,881,600	44,800,000	55,446,752		3,512,507	1,952,917	4,279,400	400,000	1,732,711
Apr 2024	35,840,000	98,255,712	89,895,424	140,582,016	432,320,000	19,200,000	320,000	3,070,491	702,308	2,196,594	3,860,000	600,000
Total	35,840,000	555,314,944	1,603,236,704	1,608,487,616	477,120,000	112,710,400	320,000	17,353,592	12,525,287	25,132,619	4,260,000	3,522,200

HPC Centre	Core hours awarded	Node hours awarded
CSC (FI)	3,211,724,320	37,657,906
CINECA (IT)	591,154,944	17,673,592
BSC (ES)	589,830,400	7,782,200
TOTAL	4,392,709,664	63,113,698

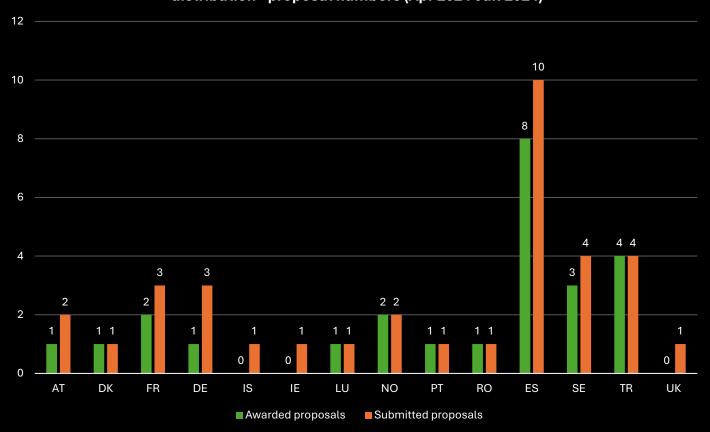

63 million node hours awarded via the Extreme Scale Access call

AI & Data Intensive Applications Access - Submitted vs administratively accepted vs awarded proposals (Apr 2024-Oct 2024)


Al and Data Intensive Applications Access - Research domains distribution of awarded proposals (Apr 2024-Jun 2024)


- Biochemistry, Bioinformatics, Life Sciences, Physiology and Medicine
- Engineering, Mathematics and Computer Sciences
- Chemical Sciences and Materials, Solid State Physics

Al and Data Intensive Applications Access – Industry involvement – awarded proposal numbers (Apr 2024-Jun 2024)



Al and Data Intensive Applications Access – Al technologies selected – submitted proposal numbers (Apr 2024-Oct 2024)

Al and Data Intensive Applications Access - PI affiliation countries distribution - proposal numbers (Apr 2024-Jun 2024)

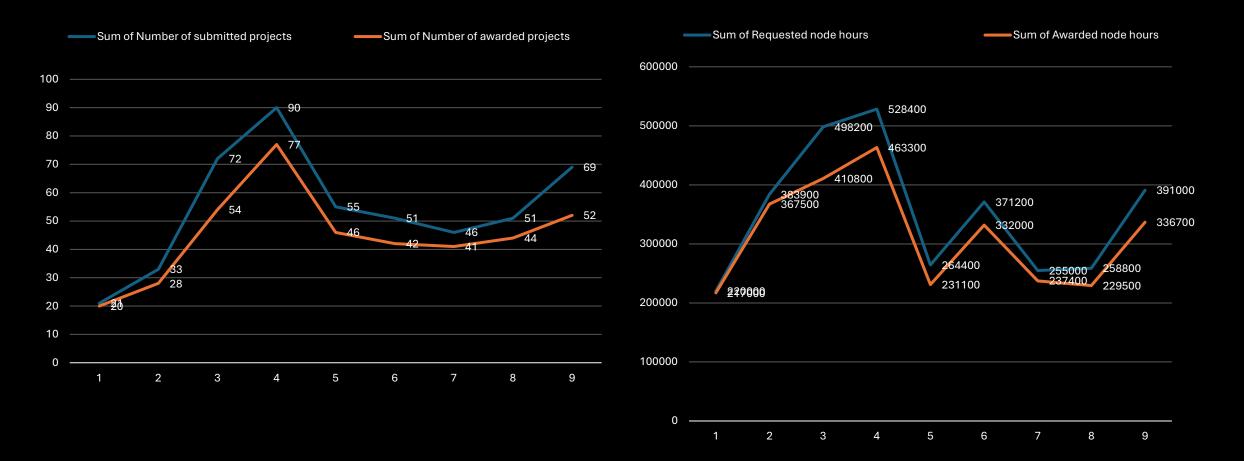
PROPOSAL NUMBERS PER COUNTRY - PI AFFILIATIONS							
COUNTRY	COUNTRY CODE	NO OF AWARDED PROJECTS	NO OF SUBMITTED PROJECTS				
Austria	AT	1	2				
Denmark	DK	1	1				
France	FR	2	3				
Germany	DE	1	3				
Iceland	IS	0	1				
Ireland	IE	0	1				
Luxembourg	LU	1	1				
Norway	NO	2	2				
Portugal	PT	1	1				
Romaina	RO	1	1				
Spain	ES	8	10				
Sweden	SE	3	4				
Turkey	TR	4	4				
United Kingdom	UK	0	1				
TOTAL		25	35				

	AWARDED RESOURCES ACROSS ALL CUT-OFFS (NODE HOURS)									
Cut-off	Vega GPU	MeluXina GPU	Karolina GPU	LUMI-G	Leonardo Booster	MareNostrum5 ACC	TOTAL			
April 2024	0	0	7,500	35,000	400,000	128,000	570,500			
June 2024	0	0	0	35,000	300,000	128,000	463,000			
TOTAL	0	0	7,500	70,000	700,000	256,000	1,033,500			

1 million node hours awarded via the AI and Data Intensive Applications Access call

SYSTEM OFFERS (NODE HOURS)						
Vega GPU	7,100					
MeluXina GPU	25,000					
Karolina GPU	7,500					
LUMI-G	351,455					
Leonardo Booster	545,865					
MareNostrum5 ACC	129,377					
TOTAL	1,065,918					

Access calls statistics BENCHMARK AND DEVELOPMENT ACCESS


Benchmark and Development Call Statistics for the period of Jan - Sept 2024

ACCESS MODE	NUMBER OF SUBMITTED PROJECTS	REQUESTED NODE HOURS	NUMBER OF AWARDED PROJECTS	AWARDED IN % OF REQUESTED PROJECTS	AWARDED NODE HOURS	AWARDED NODE HOURS IN % OF REQUESTED NODE HOURS
BENCMARK ACCESS	188	720.000	158	84%	629.800	87%
DEVELOPMENT ACCESS	300	2.450.900	246	82%	2.195.500	90%
Total	488	3.170.900	404	83%	2.825.300	89%

Access calls statistics BENCHMARK AND DEVELOPMENT ACCESS

Benchmark and Development Call Statistics for the period of Jan - Sept 2024

The Peer-Review Team

Klara Meštrović

Klara.Mestrovic@eurohpcju.europa.eu

Krishnakshi Bhuyan

Krishnakshi.Bhuyan@eurohpcju.europa.eu

Dora Marton

Dora.Marton@eurohpcju.europa.eu

Catarina Guerreiro

Catarina.Guerreiro@eurohpcju.europa.eu

JOINT UNDERTAKING

The Access Resource Committee

some comments from

Maria Paola Lombardo and Tobias Weinzierl

Different calls at a glance:

Regular Access

Domain-specific panels
10 pages
See max node hrs
4 months turnaround
Workhorse

Extreme-scale Access

One big panel
20 pages
See min node hrs
6 months turnaround
Champion runs

ARC members take part in Regular and Extreme Access Calls

Regular Access Calls:

Panel chair appoints panel (per domain)

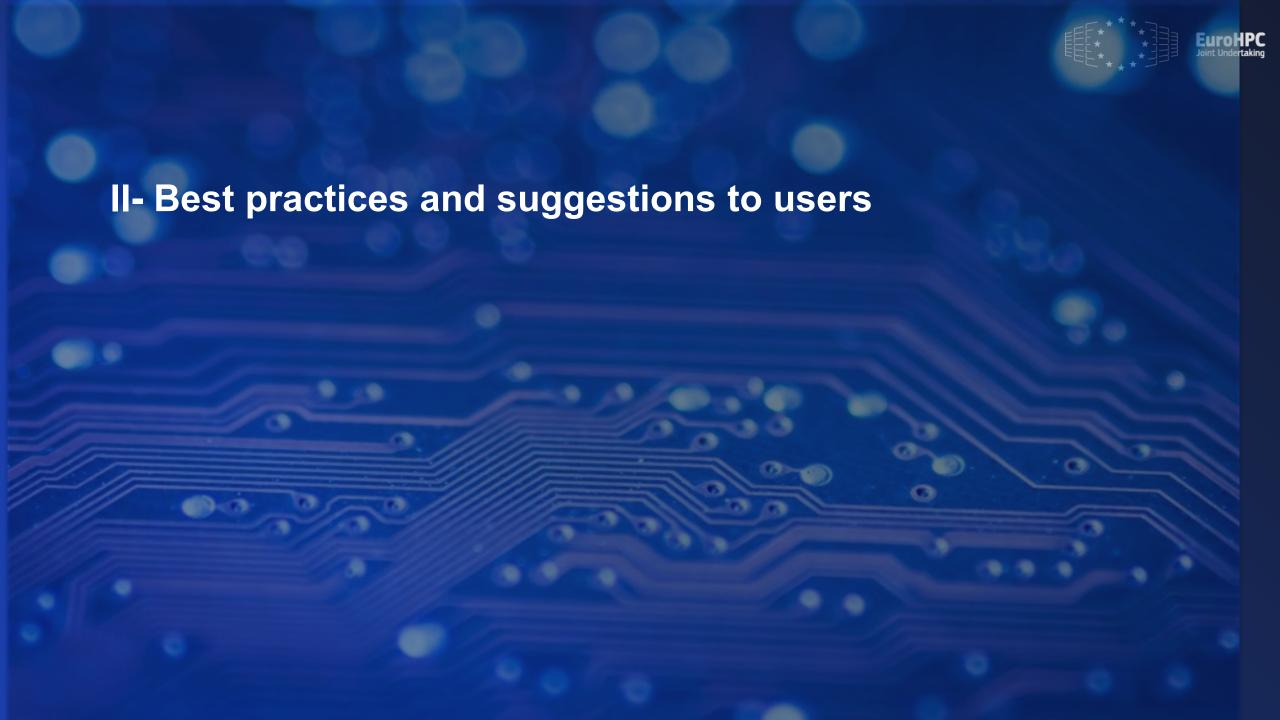
Reviews (2/proposal) by panel members \rightarrow panel discussion \rightarrow domain ranking Superpanel (i.e. all chairs) \rightarrow panel discussion \rightarrow eligible proposals, global ranking

Extreme Access Calls:

ARC chair and deputy appoint panel of rapporteurs (only one panel)

Rapporteurs appoint referees (3/proposal)

Reviews plus technical assessment → reply by the PI


Rapporteurs summarise and moderate reviews plus rebuttals internally

ARC discussion \rightarrow grading of the proposals \rightarrow eligible proposals, global ranking

Currently about 70 ARC members – our own involvement & expertise:

MpL: EuroHPC Expert – Computational Physics

TW: EuroHPC Expert – Computer Science

- As the majority of proposals are above threshold, our main challenge is ranking across different fields. Hence, a clear explanation of the expected impact on a given field is a strong asset of the proposal.
- Take the technical requirements seriously: if needed, use help from the Centers to produce scaling plots on the machines your are applying to, and optimize.
- Keep in mind we have to select projects that can exploit the resources in the best possible way: motivate your requests and explain why certain resources requested.
- Statements on possible "minimum acceptable allocation" (although not required) are helpful.
- We are evaluating proposals: Even if you are a leading expert in the field and/or if you are working on a well-known important problem, motivations and details are needed.

Technical assessment/feedback not worked in

I/O and data transfer crucial

HPC terminology (e.g. speedup) not properly used

Evolutionary character not clearly justified

Lack of methodological innovation

Continuation/evolutionary proposals without clear outcomes/dissemination of previous submission (plus self-plagiarism, added motivation ... yet, they are often necessary)

Clear capability character of proposals

External Referees play a crucial role in the Extreme Access Calls - We thank them!

For their work to be useful, please note: The panel does not average the grades from different referees. Rather, the panel seeks coherence, tries to understand differences, and to reach a consensus.

Hence:

- Try to be as objective as possible in your evaluation, highlighting strength and weaknesses of the proposal - unduly generous statements and/or generic negative statements are not useful.
- -Strive for coherence between your comments and the marks. Not only incoherent marks may receive little consideration, but this also casts in a poor light the entire report.

Instead of a conclusion ...

... Subjective views and wish list on the evolution of the field, HPC communities, in general, and within our domains ...

....from Tobias

- More methodological high risk-high gain
- Algorithmical novelty in Al proposals
- Open data != reproducible sciences
- Spread out resource requirements evenly
- Parallel submissions to multiple panels → clear differentiation and different focus

....from Maria Paola

Triumph of Artificial Intelligence!

In past years, two main issues:

-proposals in different domains 'spiced up' with Al

-AI - focussed proposals difficult to compare with others

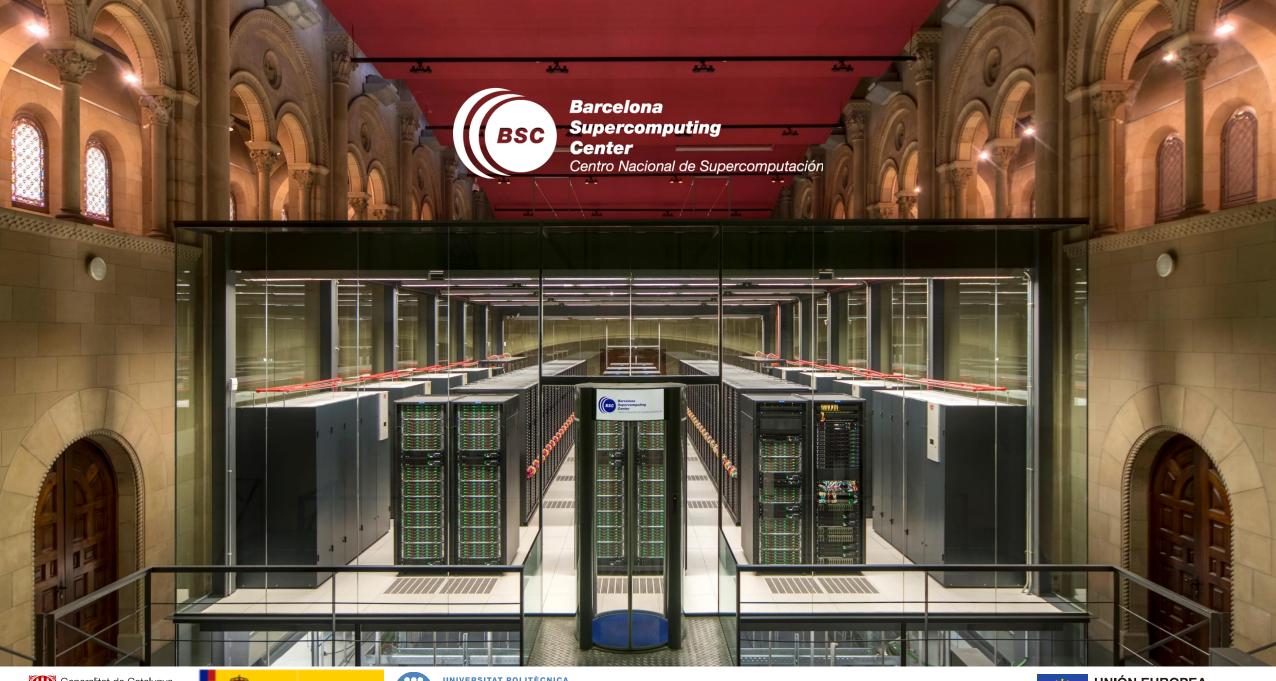
Now:

Dedicated AI track – killing two piegeons – the two issues – with one stone??

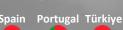
- Great rise of astrophysics and cosmology, fuelled by Gravitational Waves
- An increasing interest in plasma science, including magnetic fusion
- Lattice Quantum Chromodynamics computational nuclear and hadronic physics — no longer dominating the scene but still requesting significant resources

A common computational aspect: the need to explore a large set of parameters, naturally leading to continuation projects, often spanning many years...

Discussion are starting on community access
..many pros and cons..


Your views??

(on this and all the other topics we touched upon today!)



MareNostrum 5 System and Support

Sergi Girona & David Vicente **Operations Department**

sergi.girona@bsc.es david.vicente@bsc.es The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC Joint Undertaking, through the European Union's Connecting Europe Facility and the Horizon 2020 research and innovation programme, as well as the Participating States Spain, Portugal and Türkiye

MareNostrum 5

Total peak performance: **315.2** Pflops

General Purpose Partition: 46.4 Pflops (29-04-2024) (29-04-2024) 260 Pflops Accelerated Partition: 2.82 Pflops Next Generation GPP: (WiP) (TBA) Next Generation ACC: 6 Pflops

MareNostrum 2 2006 - 94.2 Tflops 1st Europe / 5th World New technologies

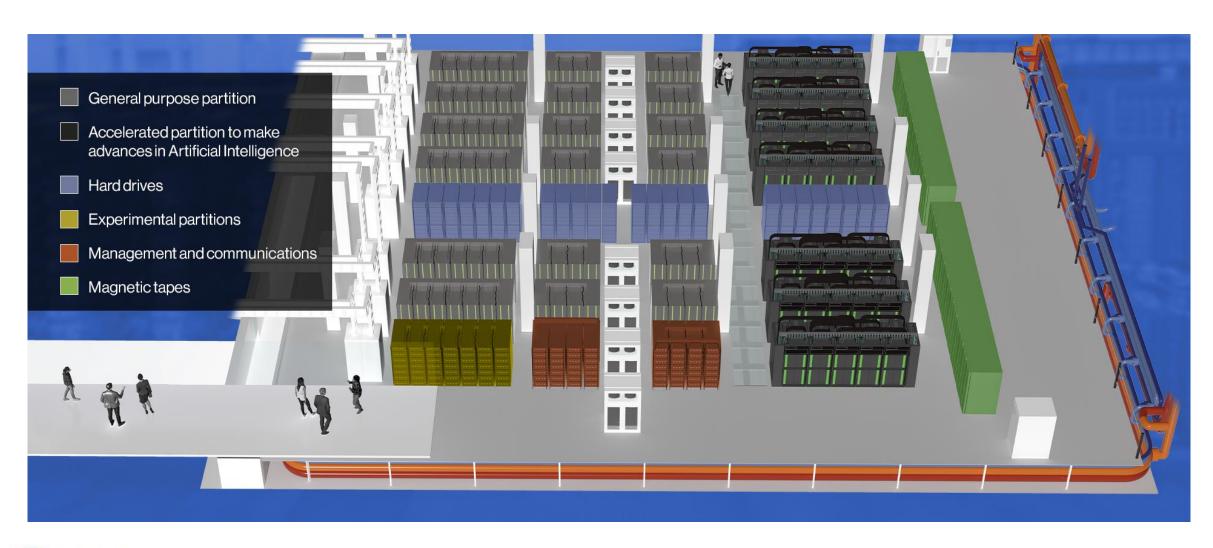
MareNostrum 3 2012 - 1.1 Pflops 12th Europe / 36th World

MareNostrum 4 **2017 – 11.1 Pflops** 2nd Europe / 13th World New technologies

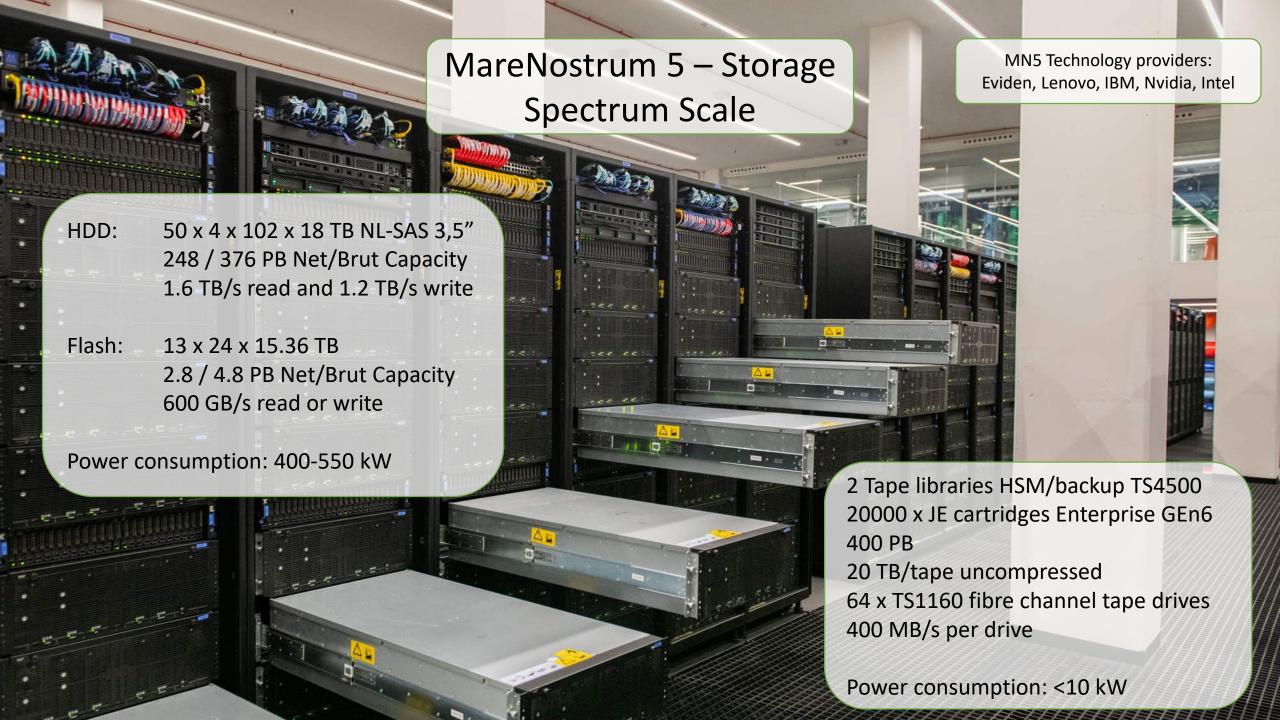
3rd and 7th Europe UNIÓN EUROPEA Plan de Recuperación, Transformación y Resiliencia Fondo Europeo de Desarrollo Regional

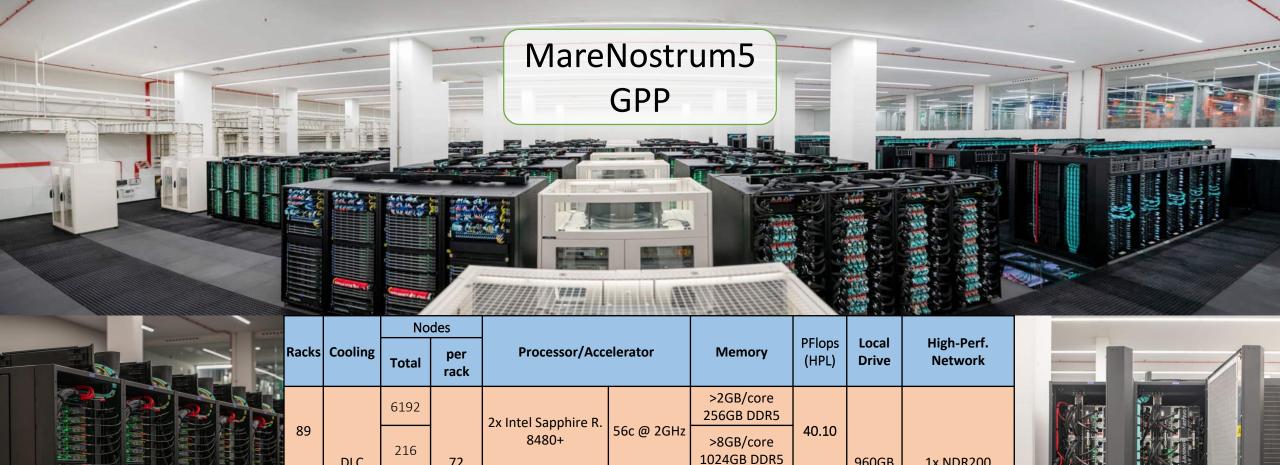
MareNostrum 5

2022


260 + 46.4 Pflops

8th and 19th World


MareNostrum5



Top 23, June 2024

Rank	Name	Country	Cores	Accelerators	Rmax [TFlop/s] Rp	peak [TFlop/s] G	Flops/Watts	Computer	Site
1	Frontier	United States	8.699.904	8.138.240	1.206.000	1.714.814	52,93	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	DOE/SC/Oak Ridge National Laboratory
2	Aurora	United States	9.264.128	8.159.232	1.012,000	1.980.006	26.15	HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11	DOE/SC/Oak Ridge National Laboratory
3	Eagle	United States	2.073.600	1.900.800	561.200	846.835		Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR	Microsoft Azure
4	Fugaku	Japan	7.630.848		442.010	537.212	14,78	Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D	RIKEN Center for Computational Science
5	LUMI	Finland	2.752.704	2.566.080	379.700	531.505	53,43	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	EuroHPC/CSC
6	Alps	Switzerland	1.305.600	844.800	270.000	353.748	51,98	HPE Cray EX235a, AMD Optimized 3 rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	cscs
7	Leonardo	Italy	1.824.768	1.714.176	241.200	306.311	32,19	BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, 4x NVIDIA 100	EuroHPC/CINECA
8	MareNostrum 5 ACC	Spain	663.040	591.360	175.300	249.435	42,15	BullSequana XH3000, Xeon Platinum 8460Y+ 40C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR200	EuroHPC/BSC
9	Summit	United States	2.414.592	2.211.840	148.600	200.795	14,72	IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	DOE/SC/Oak Ridge National Laboratory
10	Eos NVIDIA DGX SuperPOD	United States	485.888	439.296	121.400	188.645		NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400	NVIDIA Corporation
11	Venado	United States	481.440	311.520	98.510	130.44	58,29	HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11	DOE/NNSA/LANL
12	Sierra	United States	1.572.480	1.382.400	94.640	125.712	12,72	IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	DOE/NNSA/LLNL
13	Sunway TaihuLight	China	10.649.600		93.015	125.436	6,05	Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	National Supercomputing Center in Wuxi
14	Perlmutter	United States	888.832	774.144	79.230	112.998	26,90	HPE Cray EX 235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-11	DOE/SC/LBNL/NERSC
15	Selene	United States	555.520	483.840	63.460	79.215	23,98	NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband	NVIDIA Corporation
16	Tianhe-2A	China	4.981.760	4.554.752	61.444	100.679	3,32	TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000	National Super Computer Center in Guangzhou
17	СЕА-НЕ	France	389.232	251.856	57.110	112.560	47,32	BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail BXI v2	Commissariat a l'Energie Atomique (CEA)
18	Explorer-WUS3	United States	445.440	422.400	53.960	86.987		ND96_amsr_MI200_v4, AMD EPYC 7V12 48C 2.45GHz, AMD Instinct MI250X, Infiniband HDR	West US3
19	ISEG	Netherlands	218.880	200.640	46.540	86.792	35,26	Gigabyte G593-SD0, Xeon Platinum 8468 48C 2.1GHz, NVIDIA H100 SXM5 80 GB, Infiniband NDR400	Nebius
20	Adastra	France	319.072	297.440	46.100	61.608	50,03	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	GENCI-CINES
21	JUWELS Booster Module	Germany	449.280	404.352	44.120	70.980	25,01	Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite	Forschungszentrum Juelich (FZJ)
22	MareNostrum 5 GPP	Spain	725.760		40.102	46.371	6,97	ThinkSystem SD650 v3, Xeon Platinum 03H-LC 56C 1.7GHz, Infiniband NDR200	EuroHPC/BSC
23	Shaheen III - CPU	Saudi Arabia	877.824		35.658	39.607	6,73	HPE Cray EX, AMD EPYC 9654 96C 2.4GHz, Slingshot-11	King Abdullah University of Science and Technology

56c @

1.9GHz

November 2023

2x Intel Sapphire R.

9480

HPL: #19, #1 x86

72

HPCG: #24

DLC

+RDHX

72

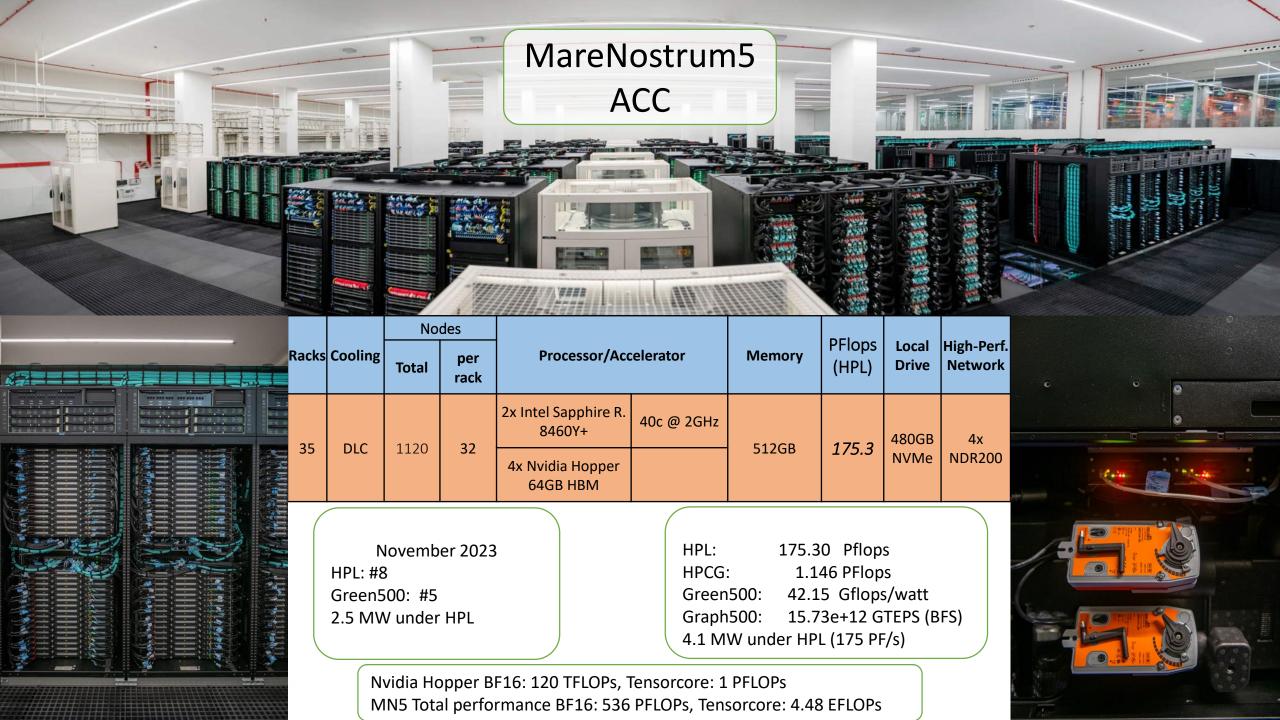
(6x6x2)

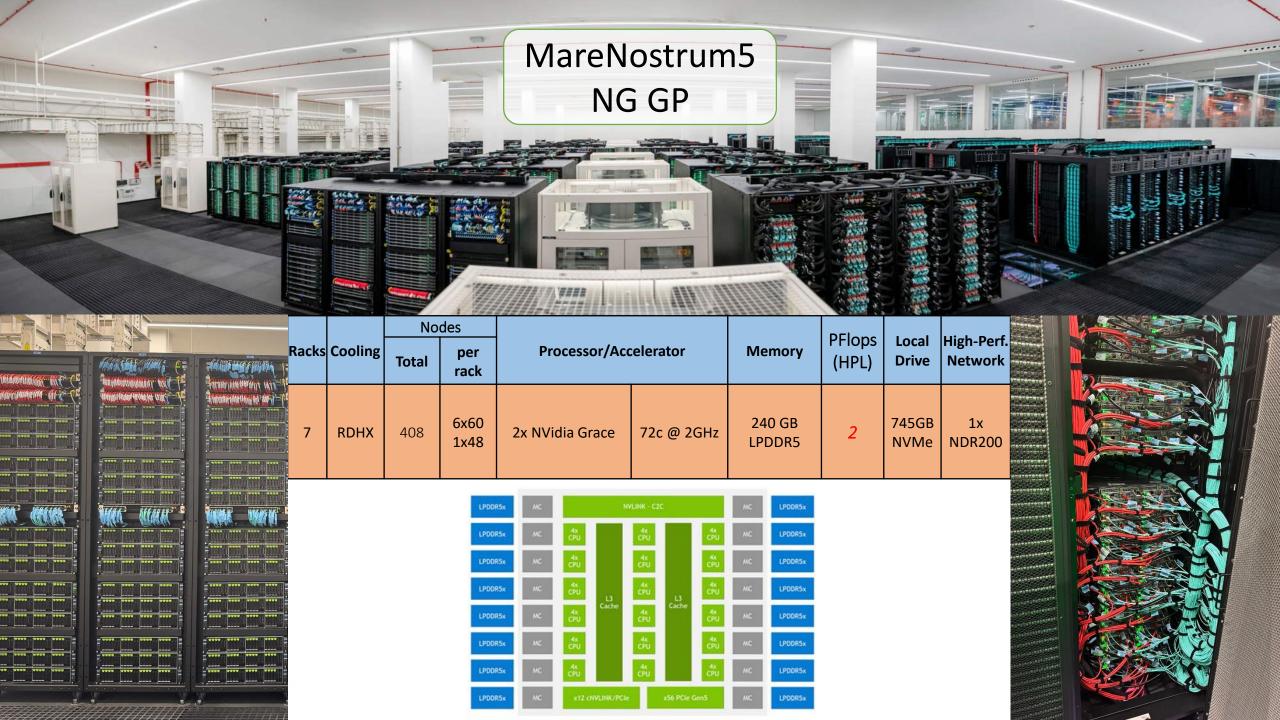
Green500: #81 5.7 MW under HPL HPL: 40.10 PFlops HPCG: 484.36 TFlops

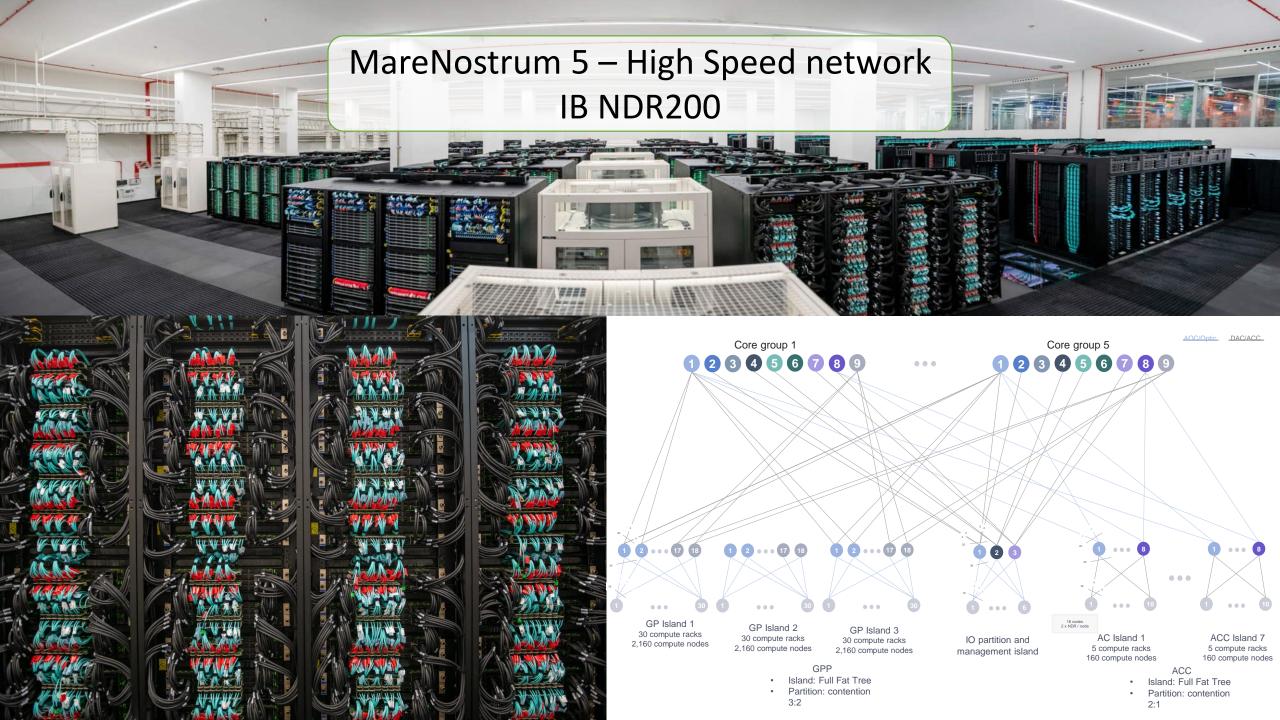
> 0.5GB

HBM/core

128GB HBM + 32GB DDR5


6.97 Gflops/watt Green500:


0.34


1x NDR200

NVMe Shared by 2 nodes

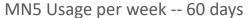
960GB

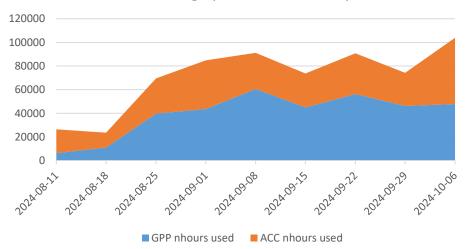
MareNostrum 5 **Users and Support**

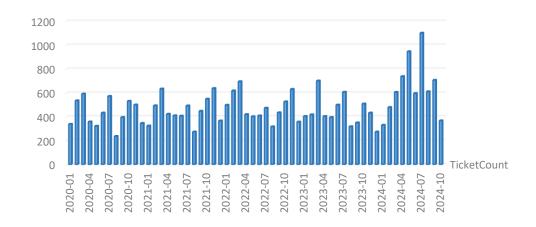
The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC Joint Undertaking, through the European Union's Connecting Europe Facility and the Horizon 2020 research and innovation programme, as well as the Participating States Spain, Portugal and Türkiye

Hosting Consortium:

MareNostrum5 – specific features


- Ideal for highly scalable applications, being an exceptionally large General-Purpose Processor (GPP) machine with over 6400 nodes and 717,000 cores.
- Well-suited for Large Language Models and Artificial Intelligence, thanks to its over 4400 NVIDIA H100 GPUs (each with 64GB HBM2e memory).
- Excellent for heterogeneous executions, with three partitions (GPP, HBM, and ACC) utilizing the same batch system, allowing mixed jobs.
- Perfect for large-scale data applications, equipped with the IBM Spectrum Scale file system supporting up to 240 petabytes with 1.2 TB/s write and 1.6TB/s read bandwidth and 400 PB on tapes.




MareNostrum 5 Numbers

TicketCount

	EuroHPC	Total
Number of Projects	118	575
Numer of Users	319	1860
Number of jobs		
submited		> 10 M

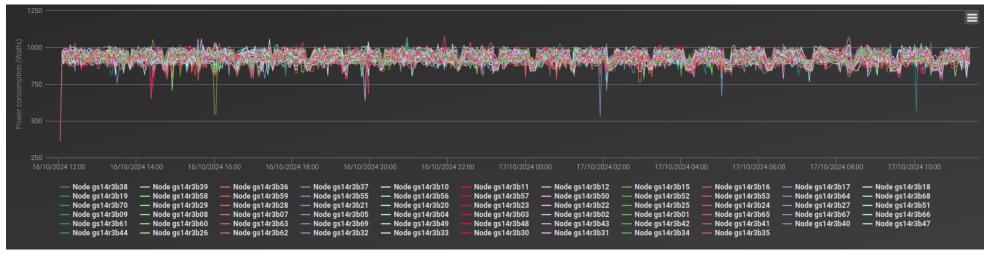
	Installed apps
GPP partition	275
ACC partition	113
TOTAL	388

MareNostrum 5 – Important points

Topic of interest	description		
Internet access from login nodes	No outgoing connection from any compute or login node This limitation affects the creation of python envs The solution currently implemented is just ask support@bsc.es to install the env for you (as user or in a generic python module)		
Containers options available	Only Singularity containers are available, and without fakeroot, any NGC container from NVIDIA version 23.7 or higher can be installed and run. Previous versions may cause issues with GLIBC.		
LLM models	Good scalability with up to 64 nodes (256 GPUs), for larger runs the filesystem can become a limitation, but 128 nodes has still a quite good efficiency but starts degradation. We are studying ways to improve scalability further.		
Energy Efficiency and Power Management	We provide EAR monitoring in all the nodes, ACC and GPP		

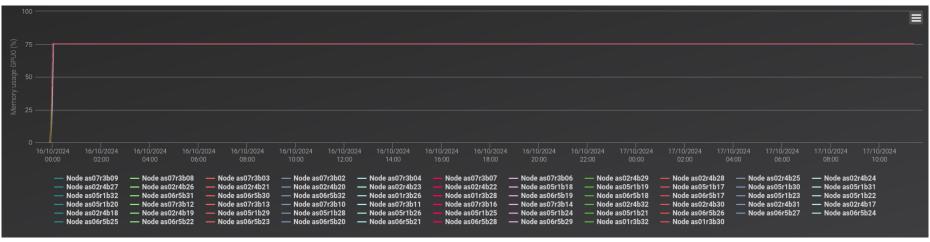
MareNostrum5 – Important points

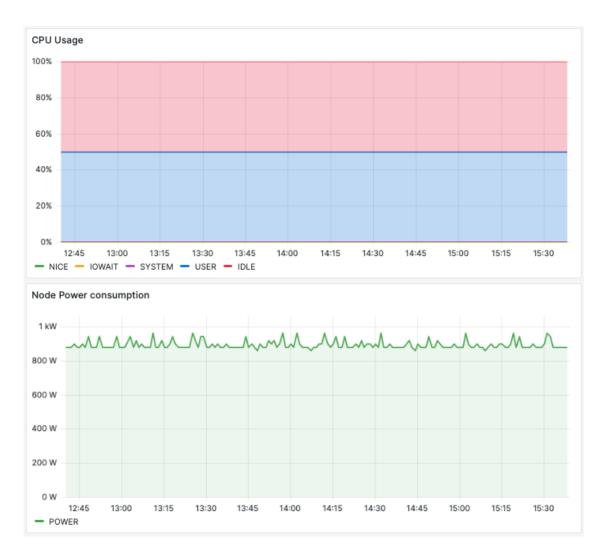
Topic of interest	description		
Data Transfer nodes for large data movements	200GB/s connection shared between 4 data transfer nodes. SSH protocol and Grid FTP available (GridFTP only under petition)		
Network GPP and ACC	GPP – 100GB/s per node ACC 800GB/s per node (4 devices of 200GB/s, 1 per GPU) <u>contention:</u> island GPP 2160 nodes (241.920 cores), then 3:2 island ACC 160 nodes (640 GPUs), then 2:1		
Userportal	Job status on real time and post-mortem Data from GPUs available and power usage per node		


UserPortal

Please, have a look at these very useful features: CPU and Disk accounting with usage alarms: https://userportal.bsc.es/accounting Job status alarms: https://www.bsc.es/user-support/hpc_portal.php#jobnotifications Q Updated on 17/10/2024 09:59:03 EXPORT TO CSV - bsc099349 MareNostrum 5 CPU Memory ID QOS Name Status User Machine Submit time Start Wallclock Nodes Tasks **① ①** 09/10/2024 09/10/2024 02-23:59 9858717 bsc099349 MareNostrum 5 80 N/A N/A PREVIEW VIEW run_script Completed acc_bench 12:48:30 12:48:55 09/10/2024 09/10/2024 02-23:59 VIEW 9858524 bsc099349 20 N/A N/A PREVIEW MareNostrum 5 acc_bench run_script Completed 12:42:16 12:42:19 08/10/2024 08/10/2024 N/A **PREVIEW** VIEW 9818239 interactiv... Completed bsc099349 MareNostrum 5 gp_bench Unlimited N/A 08:59:32 08:59:35 08/10/2024 08/10/2024 PREVIEW VIEW 9818230 bsc099349 MareNostrum 5 gp_bench Unlimited N/A N/A interactiv... Completed 08:57:45 08:57:40 07/10/2024 07/10/2024 bsc099349 N/A N/A PREVIEW VIEW 9789079 interactiv... Completed MareNostrum 5 gp_bench Unlimited 14:33:07 14:33:08 07/10/2024 07/10/2024 **PREVIEW** VIEW 9788839 interactiv.. Completed bsc099349 MareNostrum 5 gp_bench Unlimited N/A N/A 14:26:31 14:26:37

UserPortal node compute usage and power consumption


UserPortal node compute usage and power consumption


UserPortal GPU0 memory and compute usage

CPU nodes power monitoring

GPU nodes power monitoring

System Overview

BootStrap: docker

- 35% EuroHPC JU users + 65% national users
- 2FA (FreeIPA SSH key + OTP)
- long term storage (Ceph) + high performance storage (Lustre)
- software on our central CVMFS repo as EasyBuild modules + EESSI repo
- support for containers (--fakeroot, MOFED template)
- own image registry is planned


Common User Behaviour Challenges

Most tickets are first level support:

- two-factor authentication (2FA) and SSH key setup
- understanding resource priority

https://doc.vega.izum.si/priorities

https://doc.vega.izum.si/ssh

Quota & Accounts

V V V E G A

- quota on home directory and usage of storage
- multiple projects usage

Quotas

Quotas	Capacity	Description
home	100GB	Size of home directory for each user
scratch	20GB	Size of scratched directory for each user

https://doc.vega.izum.si/mountpoints/

Multiple Project Usage

Users with multiple project access have multiple Slurm accounts. For each project, the Slurm account is unique. The users on the same project have the same Slurm account.

The default account is usually set on the first approved project and can be changed by sending a request to support@sling.si.

Users can get information of their Slurm accounts with commands:

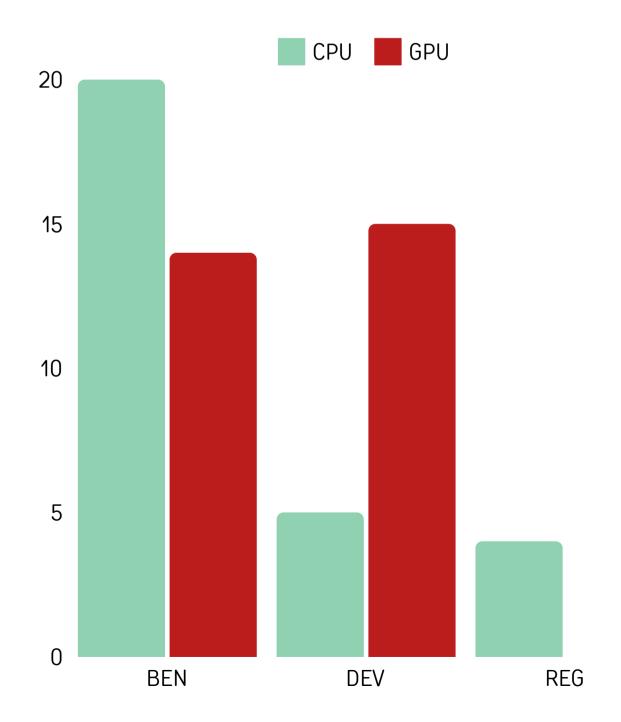
```
sacctmgr show assoc cluster=vega user=$USER format=account%40 -n
```

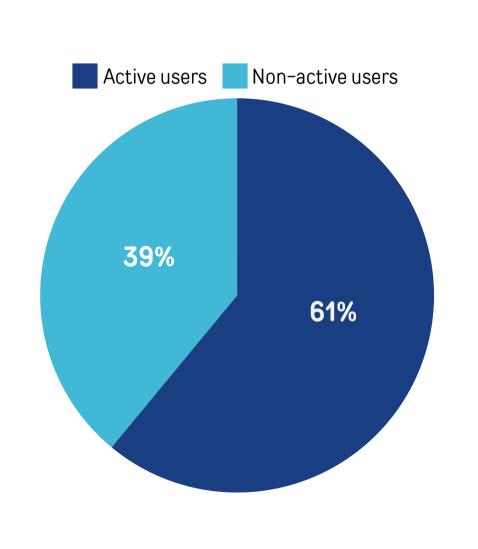
This is very important, because users with multiple project access in order to send jobs on the right project must use the flag --account in the srun and sbatch command.

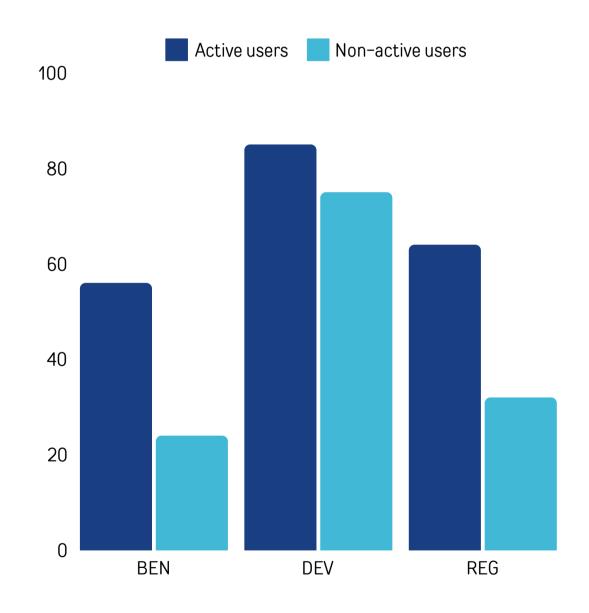
Using flag --account enabling usage of resources on the right project. If the user does not set flag --account, then the job will be sent on the default set account, project.

SBATCH example for multiple project access:

```
#!/bin/bash
#SBATCH --job-name=my_job
#SBATCH --account=example
#SBATCH --partition=cpu
#SBATCH --cpus-per-task=12
#SBATCH --mem=32GB
#SBATCH --time=01:00:00
```




Underutilized Resources & Non-Active Users

Projects with less than 10% of allocated resouces used

Extensions

AI, REGULAR & EXTREME SCALE ACCESS CALLS:

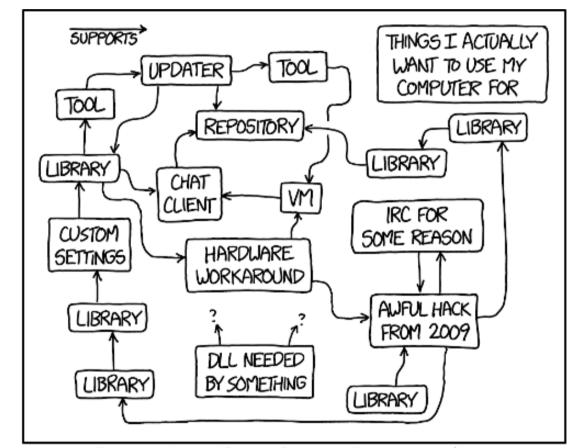
- 3 months no additional resources
- max 20% of the initial allocation
- request at the latest 1 month before original end of allocation
- send request to access@eurohpc-ju.europa.eu

BENCHMARK & DEVELOPMENT ACCESS CALLS:

- extensions not granted
- exceptional in case of technical issues coming from the centre

Storage Issues

- high performance storage Lustre not suitable for all workflows
- use RAM/local disk/Ceph for scratch
- environments with lots of small files (i.e. Conda/pip) = containers recommended



Software & Submit

V V V E G A

- choosing the correct version of different software (ask!)
- providing modules, job submission help (MPI, UCX, mem...), container templates

```
| Perilladid, 12, 94 | Perilla
```

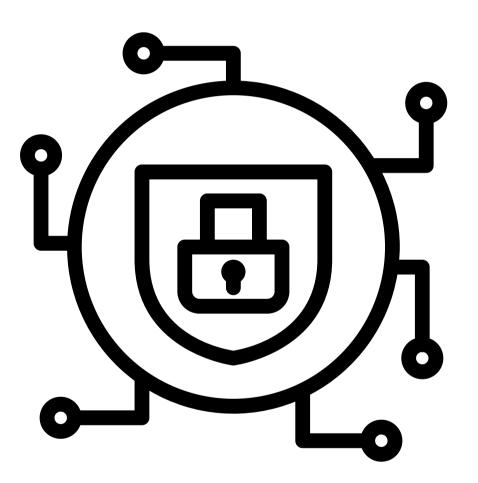

EVERY NOW AND THEN I REALIZE I'M MAINTAINING A HUGE CHAIN OF TECHNOLOGY SOLELY TO SUPPORT ITSELF.

source: https://xkcd.com/1579/

REPUBLIC OF SLOVENIA

MINISTRY OF EDUCATION,

SCIENCE AND SPORT



Security

- HPC systems don't emphasize security enough = too much trust placed in users!
- zero trust principle needs to be implemented (malicious internal user poses biggest risk)
- security very important, especially for industry users
- 2FA implemented successfully
- custom kernel immediate response to critical vulnerabilities
- security experts on Vega team
- on-the-fly risk assesment

Projects on HPC Vega

Documentation & Feedback

Q Search

- documentation
- sending final report and feedback to support team

support@sling.si

EuroHPC Joint Undertaking (JU) Regular Access

Final Report

HPC Vega - IZUM, Maribor, Slovenia HPC Vega - IZUM, Maribor, Introduction Specifications Architecture Application domains Instructions Get Access Getting Started SSH Key Management Login information File Management Software Environment Software Benchmarks Job Submission Accounting Industry Access Industry access Policies and Terms

General Terms of Use

Shares

Eligibility Requirements

Billing

Bulletin board

Announcements of OPEN projects and calls

- EPICURE We provide support for the transfer and optimization of applications (Level 2 and Level 3 support) to users of EuroHPC JU supercomputer clusters. Submit your project at pracecalls.eu and get free support for your code.
- SMASH Open Call 3 2024 The European training programme SMASH is looking for postdoctoral candidates with ambitious research projects (OPEN 15th of July).
- InterTwin co-designs and implements the prototype of an interdisciplinary Digital Twin Engine (DTE) for modelling and simulation to integrate application-specific Digital Twins
- EU Master4HPC The aim of this project is to define a roadmap that aims at promoting and supporting the implementation of the updated curriculum for a European master in HPC within the interested participating universities.

CLOSED projects and calls

• Inno4scale - The EuroHPC Joint Undertaking has launched a new research project the Inno4scale, a European initiative, which was started to support the development of innovative algorithms for exascale supercomputers, so their efficient use can be fully exploited.

News and updates in the user documentation

• Two-factor authentication for Iphone users - Notice of Two-factor authentication for Iphone users (03.06.2024)

https://en-vegadocs.vega.izum.si/

Table of contents

- ※

Announcements of OPEN projects and calls

CLOSED projects and calls

News and updates in the user documentation

ARTIFICIAL INTELLIGENCE (AI) APPLICATIONS (AISC)

EHPC USER DAY— AMSTERDAM, NL, OCTOBER 22, 2024 MLADEN.SKELIN@EUROHPC-JU.EUROPA.EU

BACKGROUND

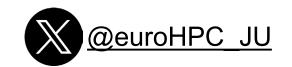
- In January 2024 a package of measures was launched to support European startups and SMEs in the development of trustworthy artificial intelligence (AI) that respects EU values and rules (AI Factories).
- HPC(-AI) has a high entry barrier.
- Setup an action to lower the barrier and enable science, industry (SMEs, startups in particular) and public services to drive innovation.

HPC-AI SUPPORT CENTER (ASIC) CONCEPT Collaboration 10 M€ GRANT EuroHPC JU with NCCs and **EDIHs** SUPPORTS TRANSITION NATIONAL COMPETENCE of USER AI-CENTERS (NCCs) CODES/WORKFLOWS HPC-AI SUPPORT CENTER to HPC environments (AISC) **EUROPAN DIGITAL** INNOVATION HUBS (EDIH) SCOPE: LARGE-**SCALE AI MODELS** USER "3", e.g. USER "1", e.g. SME USER "2", e.g. UNIV. PUB. ADMIN.

CURRENT SITUATION

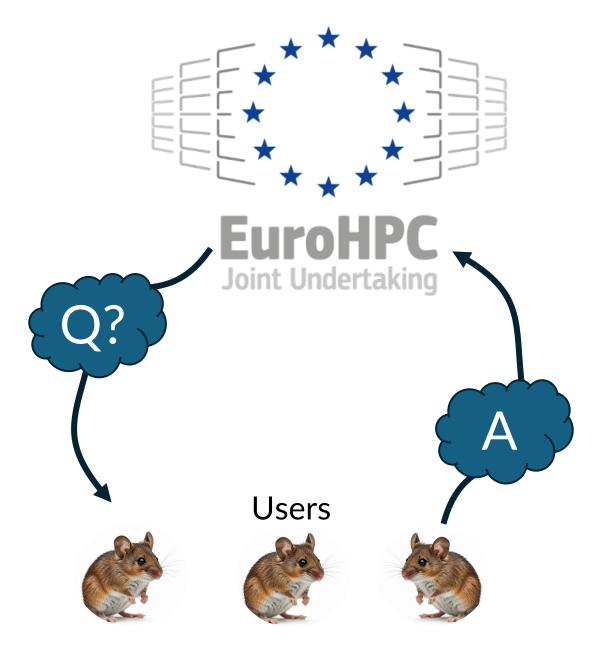
• A consortium has been selected and invited for grant agreement preparation.

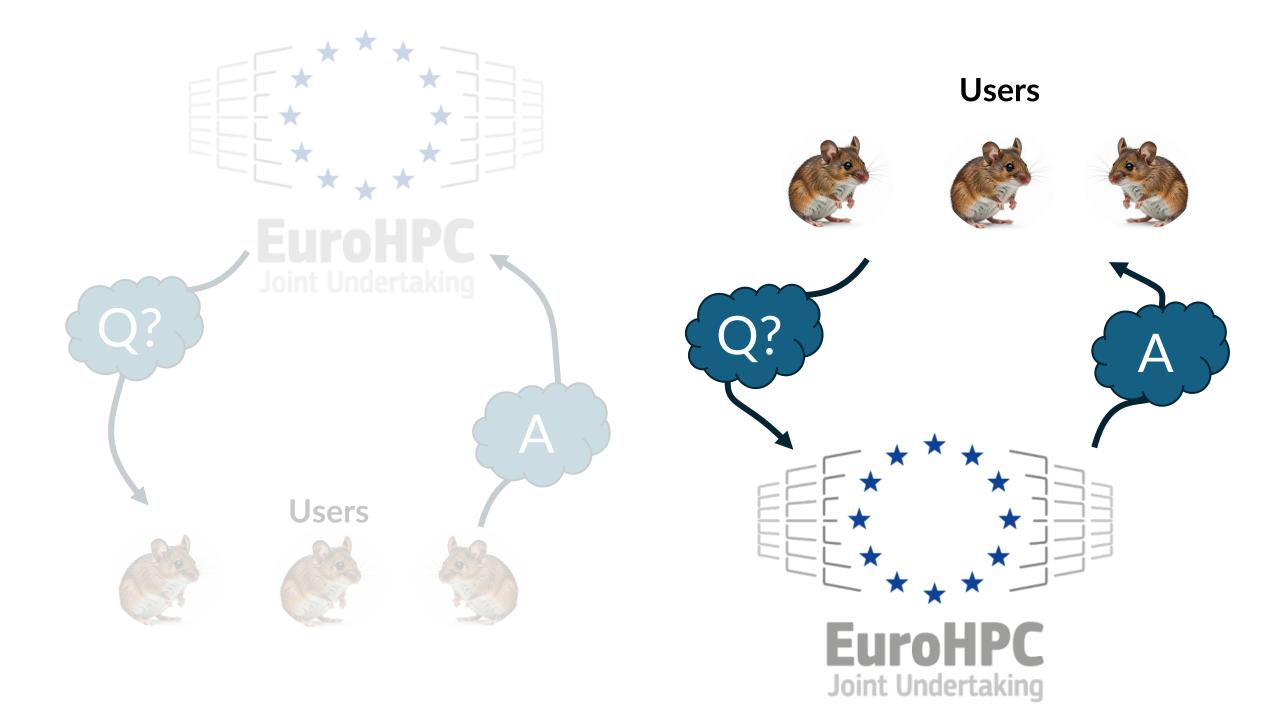
Upcoming AI factories services.



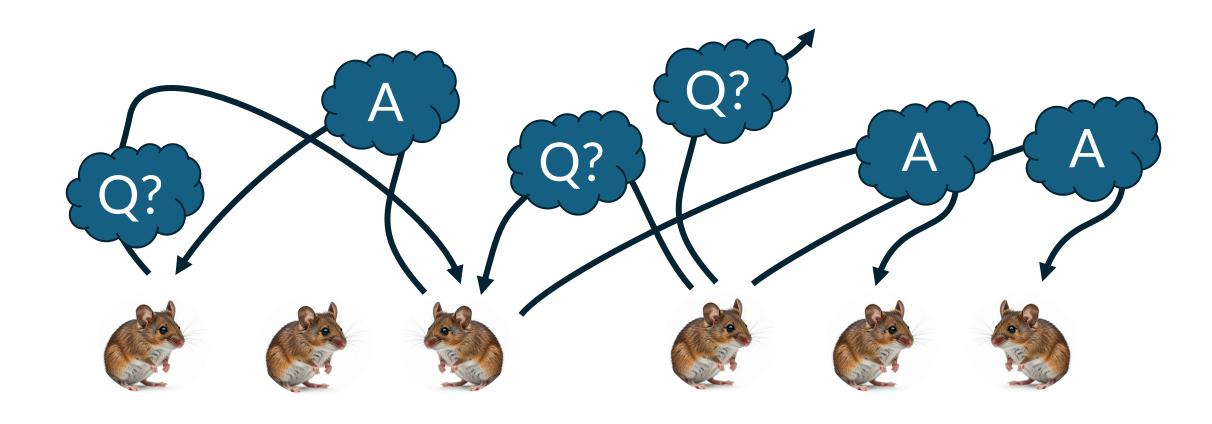
For more information, feel free to visit our website and social media:

EuroHPC User Day User Forum Coordination Group


Introducing the EuroHPC User Forum


From the Multi-Annual Strategic Programme:

User Forum: EuroHPC User Forum will ... promote knowledge exchange, professional development, and collaboration within the European HPC and Quantum communities. It shall be open, inclusive, independent, transparent, and responsive to the needs of its members. The Forum shall be made up of users from academic, industrial, and public sector sectors. It is an open group where discussions cover updates from EuroHPC, current developments in the European HPC community, collection of user requirements, and report on difficulties and issues they face using the EuroHPC JU infrastructure.


The creation of the EuroHPC User Forum shall have the following aim, support, and governance:

- The aim of the User Forum is to foster structured, coherent, and regular communication and exchange with all user communities and stakeholders;
- The mission and goals of the User Forum should be clear, concise, and relevant;
- The User Forum shall facilitate open consultation with user and scientific communities that also serves to highlight the EuroHPC vision;
- The User Forum shall have dedicated administrative support from the JU to ensure its sustainability and effectiveness;
- The JU shall establish a governance structure responsible for overseeing the Forum's activities and to collate and communicate feedback on user requirements to the Advisory Groups of EuroHPC as necessary;

User dialogue

Who is involved in the Coordination Group

Chris Richardson (chair) Cambridge UK, Physics/Engineering finite element software development

Maria Girone (deputy chair) High Energy Physics, CERN-IT HPC Strategy Coordinator

Andrius Popovas (University of Oslo, Norway) HPC users for computational astrophysics

Xavier Besseron (University of Luxembourg) Research Scientist in Computer Science and Engineering

Ivan Carnimeo (CNR-IOM): Materials science/Chemistry/Physics developer of Quantum ESPRESSO, MAX (MAterials design at the eXascale) CoE, ICSC (Italian National Center for HPC)

Thomas Geenen (ECMWF, Destination Earth) - Climate and Weather Prediction and Earth System Digital Twin communities

Lara Peeters (VSC - HPC in Flanders, Belgium) - Digital Humanities

Sinéad Ryan – Lattice Quantum Chromodynamics TCD Dublin, Ireland

Zoe Cournia - Bioinformatics: Greece

Jean-Yves Verhaeghe - Computer science: France

Sergio Posada Perez - Nanoscienes: Belgium Nuno Guerreiro - Al Neural network: Portugal

Peter Taborsky - AI LLM: Denmark

Matthias Meinke - Engineering: Germany

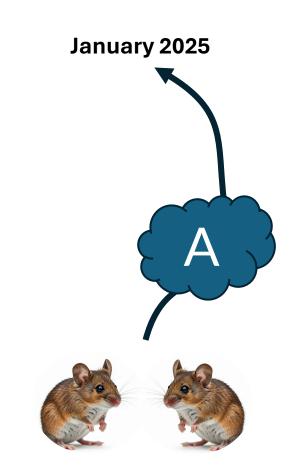
How to take part today!

 https://join.slack.com/t/eurohpcuserforum/shared_invite/zt-2r4ok2azn-mek1mzsAnH9z94okYbJr6A

- Informal "chat" application
- Help to start conversations
- Not a "high security" platform

Reporting back to EuroHPC JU

Issues EuroHPC JU want to hear about...


How to encourage users to use resources efficiently

- penalties for users who do not?

Al usage needs

HPC Applications ecosystem needs:

- application software stack
- User environment (tools etc.)
- Compatibility across systems

We need you!

- Please sign up to "slack" or contact us by email
- The "user forum" will only work if you take part!

Email: CEDeX-UFCG@eurohpc-ju.europa.eu

