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QUANTUM 
ESPRESSO is an 
integrated suite of 
Open-Source 
computer codes for 
electronic-structure 
calculations and 
materials modeling 
at the nanoscale. It is 
based on 
density-functional 
theory, plane waves, 
and 
pseudopotentials.

The QUANTUM ESPRESSO project



QUANTUM ESPRESSO is routinely used to simulate large and complex 
molecular systems. Clusters hosted at HPC centers play a crucial role to 
enhance accuracy and use predictive methods.

The QUANTUM ESPRESSO project



QUANTUM ESPRESSO is an open 
initiative involving a large 
community of developers and 
users from different regions of 
the world

Geographic distribution of the authors 
of articles citing the main reference 
articles as QUANTUM ESPRESSO

Data 
provided by 
courtesy of 
the QUANTUM 
ESPRESSO 
foundation

The QUANTUM ESPRESSO project



35000+ downloads 
20000+ citations
50000+ authors

Geographic 
distribution of 
downloads from the 
QE website since the 
beginning of 2022

The QUANTUM ESPRESSO project

Data 
provided by 
courtesy of 
the QUANTUM 
ESPRESSO 
foundation



CoE for HPC applications in materials science 

exploit frontier HPC 
for material science research 
in strong link with scientific 

communities

CODE PORTING

HTC ECOSYSTEM

CO-DESIGN

Materials design at the Exascale

http://www.max-centre.eu/



ICSC National Research Centre 
for High Performance Computing, Big Data and Quantum Computing

Spoke 7 – Flagship codes

https://www.supercomputing-icsc.it/



The current strategy for 
performance portability is to 
specialize the code to different 
hardware configurations by using 
directive based approaches: 

OpenACC and OpenMP

Porting to heterogeneous architectures



Until qe-v6.8

Fortran/CUF/OpenACC

OpenACC OpenMP5

Fortran + OpenACC + 
OpenMP5

Fortran CUDA
 Fortran

J. Chem. Phys. 152, 
154105 (2020)

J. Chem. Theory 
Comput. 19, 6992 
(2023)

From qe-v7.0

Under development

Goal

Porting to heterogeneous architectures



FFTXlibLinear Albebra 
(BLAS/Lapack)

PWscf

ModulesKS_Solvers

Modularity enables interoperability and new programming models

MAINTAINABILITY

PORTABILITY

directives

multiple 
back-ends

FLEXIBILITY

PERFORMANCE

Porting to heterogeneous architectures



Several parallelization schemes 
are implemented and 
integrated with GPU offload

Porting to heterogeneous architectures
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CUF/OpenACC offload

The QUANTUM ESPRESSO 
suite has been accelerated 
using a mixed CUDA 
Fortran/OpenACC scheme. A 
version based on OpenMP 
offloading is under heavy 
development, in order to 
enhance portability to 
hardware from different 
vendors.



CUF/OpenACC offload



Quantum ESPRESSO: one further step towards the exascale, I. 
Carnimeo et al., JCTC, 19, 20, 6992-7006 (2023)

Delugas et al., Phys. Rev. B,, 107, 214452 (2023)
Gorni et al., Phys. Rev. B,, 107, L220410 (2023)

Chromium 
Iodide, 7776 

electrons, 1152 
atoms

Magnon 
dispersions along 

the 
high-symmetry 
directions of the 

BZ

CUF/OpenACC offload



Quantum ESPRESSO: one further step towards the exascale, I. 
Carnimeo et al., JCTC, 19, 20, 6992-7006 (2023)

Silicon 100 surface, 512 
electrons, 128 atoms

Phonon dispersions along the high-symmetry 
directions of the BZ

CUF/OpenACC offload



FFTXlibLinear Albebra 
(BLAS/Lapack)

PWscf

ModulesKS_Solvers

Basic features:

- loop offloading;

- global variables; 
offloading and pinning;

- manage different 
backends (linear algebra 
and FFTs);

- streams and/or tasks (for 
async batched FFTs).

OpenMP5 offload



CUF only

if ( use_gpu ) then
  arg_d = arg
endif

if ( use_gpu ) then
  call abc( arg_d )
else
  call abc( arg )
endif

interface abc
  subroutine abc_cpu( v )
  subroutine abc_gpu( v_d )
end interface
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OpenMP5 offload
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OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc( arg )
!$acc end host_data



CUF only

if ( use_gpu ) then
  arg_d = arg
endif

if ( use_gpu ) then
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OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc( arg )
!$acc end host_data

OpenACC only

call abc_acc( arg )

subroutine abc_acc( v )



CUF only

if ( use_gpu ) then
  arg_d = arg
endif

if ( use_gpu ) then
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OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc( arg )
!$acc end host_data

OpenACC only

call abc_acc( arg )

OpenACC + OpenMP5

#if def __OPENACC
  call abc_acc( arg )
#elif def  __OPENMP
  call abc_omp( arg )
#endif

!$acc update device(arg)
!$omp target update to (arg)
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OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc( arg )
!$acc end host_data

OpenACC only

call abc_acc( arg )

subroutine abc_acc( v )

OpenACC + OpenMP5

#if def __OPENACC
  call abc_acc( arg )
#elif def  __OPENMP
  call abc_omp( arg )
#endif

!$acc update device(arg)
!$omp target update to (arg)

subroutine abc_acc( v )
subroutine abc_omp( v )



CUF only

if ( use_gpu ) then
  arg_d = arg
endif

if ( use_gpu ) then
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else
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OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc( arg )
!$acc end host_data

OpenACC only

call abc_acc( arg )

subroutine abc_acc( v )

OpenACC + OpenMP5

call abc( arg, offload )

!$acc update device(arg)
!$omp target update to (arg)

interface abc
  subroutine abc_cpu(v,off)
  subroutine abc_acc(v,off)
  subroutine abc_omp(v,off)
end interface
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OpenMP5 offload

OpenACC + OpenMP5

call abc( arg, offload )

!$acc update device(arg)
!$omp target update to (arg)

interface abc
  subroutine abc_cpu(v,off)
  subroutine abc_acc(v,off)
  subroutine abc_omp(v,off)
end interface

devXLib + 
OpenACC +OpenMP5

call abc( arg, offload )

Call devXlib (arg, offload )

The Yambo group in 
Modena is developing 

a portable library 
(devXLib) to manage 

porting to 
multiplatform 

heterogeneous 
architectures

…

Main developers:
N. Spallanzani (CNR-NANO)

G. Rossi (Intel)
A. Ferretti (CNR-NANO)



fft1d

cpy2dfft1d
fft1d
fft1d cpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to 
inFFT

CPU   GPU (streams) ● Batched 3d-FFT of the wave-function;

● the input array divided in 4 batches (on 
bands);

● 1 stream for FFTs, 4 streams for data 
movements;

● 4 async mpi communications (ISEND, 
IRECV).

Notes:

○ non-asynchronous memcpy;

○ memcpy operations D2H/H2D much 
more time consuming than FFT calls;

○ memcpy operations D2D same order of 
FFT calls.

Batched FFTs - CUF, HIP



fft1d

cpy2d fft1d
fft1d

fft1dcpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to 
inFFT

Batched FFTs - oneMKL

● ntasks associated to nbatches

● work in progress…



Au surface
~1600 electrons 

112 atoms

Execution on LUMI



Chromium Iodide
~2700 electrons

480 atoms

Execution on LUMI



What’s next

● Complete the OpenMP porting of PWscf minor routines;

● FFT optimization with OpenMP

➔ Medium/large-size benchmarks 

● Port QE codes other than PWscf (PHonon, CP, EELS, …);

● incorporate DevXlib.
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Exploring the Ultimate Regime of Turbulent Rayleigh-Bénard Convection
Through Unprecedented Spectral-Element Simulations

Project: Extreme-scale high-fidelity turbulence 
simulations of convection and boundary layers using 
accelerators (EHPC-EXT-2022E01-059)
EuroHPC used: LUMI and Leonardo
Speaker: Niclas JANSSON (KTH)



2023 ACM Gordon Bell Prize Finalist

Martin Karp Adalberto Perez Timofey Mukha Szilárd PállYi Ju Jiahui Liu

Tino Weinkauf Stefano MarkidisPhilipp SchlatterJörg SchumacherErwin Laure

N. Jansson et al., Exploring the Ultimate Regime of Turbulent Rayleigh-Bénard Convection Through Unprecedented Spectral-Element Simulations, 
SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2023.



Turbulent thermal convection
• Applications in nature and technology

• From chip cooling, heat exchanges in power plants, to heat convection in the 
Earth’s mantle and the sun.

• Rayleigh-Bénard convection: Canonical turbulent convection with 
fundamental open question: Is there an ultimate regime, i.e. anomalous 
scaling of Nusselt number (heat transfer) and Rayleigh number (buoyancy)?

• Long-standing open issue in turbulence (Kraichnan 1962)
• Difficult to conduct controlled experiments at high Rayleigh numbers 𝑅𝑎 > 1015

• Challenges with direct numerical simulations
• Large computational cost due to resolution needs: Τ𝐻 𝜂 3 ∼ 𝑅𝑎9/8

• Numerical method with minimal dissipative and dispersive errors 
to capture and track small scales in time

• Produces unmanageable volumes of data
• Long integration times for steady state statistics
• Efficient implementation on modern hardware

Cooled wall

Heated wall

Illustration of the 
canonical problem at 
𝑅𝑎 = 1013, iso-surfaces 
of temperature  



Introduction
• Exascale will require either unreasonably large problem sizes or 

significantly improved efficiency of current methods
• Finite-Volume LES of a full car on the entire K computer (京) required more 

than 100 billion grid points to run efficiently
• What problem size is needed to fill the 379 PFlop/s LUMI… 

• High-order methods
• Attractive numerical properties, small dispersion errors and more “accuracy” 

per degree of freedom
• Better suited to take advantage of modern hardware (accelerators)

Dardel: 56 nodes, 448 MI250X GCDs, ≈10 PFlop/s

京: 82944 nodes, 663552 Cores, 10 PFlop/s

...but we rather scale out 
our problems...

Accelerators works 
best with a lot of data!



Spectral Elements
• Finite Elements with high-order basis functions

• 𝑁-th order Legendre-Lagrange polynomials 𝑙𝑖 𝜉
• Gauss-Lobatto-Legendre quadrature points 𝜉𝑖
• Fast tensor product formulation

• 𝑢𝑒 𝜉, 𝜂, 𝛾 = σ𝑖,𝑗,𝑘
𝑁 𝑢𝑖,𝑗,𝑘

𝑒 𝑙𝑖 𝜉 𝑙𝑗 𝜂 𝑙𝑘 𝛾

• High-order at low cost! (Level 3 BLAS!)

• Too expensive to assemble matrices
• Element stiffness matrices 𝐴𝑖,𝑗

𝑘 with 𝑶(𝑵𝟔) non-zeros

• Matrix free formulation, key to achieve good performance in SEM
• Unassembled matrix 𝐴𝐿 = diag 𝐴1, 𝐴2, … , 𝐴𝐸 and functions 𝑢𝐿 = {𝑢𝑒}𝑒=1

𝐸

• Operation count is only 𝑶(𝑵𝟒) not 𝑶(𝑵𝟔)

• Boolean gather/scatter matrix 𝑄𝑇 and 𝑄
• Ensure continuity of functions on the element level 𝑢 = 𝑄𝑇𝑢𝐿 and 𝑢𝐿 = 𝑄𝑢

• 𝑄 and 𝑄𝑇 formed, only the action 𝑄𝑄𝑇 is used
• Matrix-vector product 𝑤 = 𝐴𝑢 ⇒ 𝑤𝐿 = 𝑄𝑄𝑇𝐴𝐿𝑢𝐿

1: A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 1984
2. M. O. Deville, P. F. Fischer, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, 2002

3: P.F. Fischer, J.W. Lottes, S.G. Kerkemeier, Nek5000 Web page: http://nek5000.mcs.anl.gov, 2008
4: H.M. Tufo, P.F Fischer, Terascale Spectral Element Algorithms and Implementations, Gordon-Bell prize 1999

http://nek5000.mcs.anl.gov


Portable Spectral Element Framework
• High-order spectral element flow solver

• Incompressible Navier-Stokes equations
• Matrix-free formulation, small tensor products
• Gather-scatter operationst between elements

• Modern object-oriented approach (Fortran 2008)

• Various hardware-backends
• CPUs, GPUs down to exotic vector processors and FPGAs

• Device abstraction layer for accelerators (CUDA/HIP/OpenCL)

• Modern software engineering (pFUnit, ReFrame, Spack)

> spack install neko+cuda ExtremeFLOW/neko

GPU

SX

CPU

www.neko.cfd



Device Abstraction Layer
How to interface Fortran with accelerators?

• Native CUDA/HIP/OpenCL implementation via C-interfaces

• Device pointers in each derived type

• Abstraction layer hiding memory management

• Hash table associating x with x_d

• Kernels invoked from the object hierarchy 
via C interfaces (𝐴𝑥, vector ops)

• Wrapper functions for each supported accelerator backend
• Templated (CUDA/HIP) or pre-processor macros (OpenCL) 

for runtime parameters

• Auto/runtime tuning based on polynomial order

subroutinefield_init(f,…)
type(field_t) :: f
...
callallocate(f%x(…,…,…,…,)
calldevice_alloc(f%x_d, size)
calldevice_associate(f%x, f%x_d)

cudaM alloc hipM alloc clCreateBuffer

src/
|
|--m ath
| -̀-bcknd
| |--cpu
| |--device
| | |--cuda
| | |--hip
| | -̀-opencl
| |--sx
| -̀-xsm m



Gather-Scatter
• Uses indirect addressing and are (mostly) non-injective

• Topology aware optimisations
• Facets (single neighbour), red points

• Injective, vectorizable (always operating on sorted tuples)

• Non facets (arbitrary number of neighbours), green points
• Cannot be made injective, not vectorizable (small amount)

• Multiple levels of overlapping communication and computation
• Overlapping with non-blocking MPI (device aware)
• Asynchronous GPU kernels (neighbours in streams)
• Auto/runtime tuning of all combinations

Async. 
processing of 

neigh. data



Synchronous and Hybrid Data Compression
• Lossy compression, physics-based method:

discard data not associated with the most energetic flow motions1

• Lossless compression:
ADIOS2 operator with runtime configuration

• 97% data reduction with a relative error of 2.5%

1:  E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data reduction,” Flow, 
Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

Fortran functions
C/C++ functions 
called in Fortran C++ functions

Nek-proc adaptor

Data passing by 
address

Lossy compression

Lossless 
compression

Data compressor

Output through IO

Data passing by 
address

in-situ function

Lossy compression

Data compressorNek-proc adaptor

Data selection

Proc-wrtr adaptor
Data passing by 

address

ADIOS writer
ADIOS insituMPI

writer

Lossless compression

Output through IO

Data compressor ADIOS reader
ADIOS insituMPI

reader

Rdr-proc adaptor
Data passing by 

address

in-situ function
Frequency 

Frequency 

Compressed velocity field 𝑅𝑎 = 1011

In-situ approach2

Synchronous  compression

Hybrid compression

2: Y. Ju et al., “In-Situ Techniques on GPU-Accelerated Data-Intensive Applications,” eScience, 2023.



Performance Baseline
• Full machine runs towards the end of the LUMI-G pilot phase

• DNS of flow past a circular cylinder at 𝑅𝑒 = 50,000
• 113M elements
• 7th order polynomials (8 GLL points)

• Simulation restarted from prebaked low-order runs
• Restart checkpoint: 453GB
• Extrapolated to 7th order polynomials
• Computed solution (snapshot): 1.5TB

• Preliminary results
• Achieved close to 80% parallel efficiency
• Using 20%, 40% and 80% of the entire machine



Numerical Method 𝑷𝑵 − 𝑷𝑵
• Time integration is performed using an implicit-explicit scheme (BDF𝑘/EXT𝑘)

෍

𝑗=0

𝑘
𝑏𝑗

𝑑𝑡
𝑢𝑛−𝑗 = −∇𝑝𝑛 +

1

𝑅𝑒
∇2𝑢𝑛 +෍

𝑗=1

𝑘

𝑎𝑗 𝑢𝑛−𝑗 ⋅ ∇𝑢𝑛−𝑗 + 𝑓𝑛

with 𝑏𝑘 and 𝑎𝑘 coefficients of the implicit-explicit scheme, solving at time-step 𝑛

Δ𝑝𝑛 =෍

𝑗=1

𝑘

𝑎𝑗 𝑢𝑛−𝑗 ⋅ ∇𝑢𝑛−𝑗 + 𝑓𝑛

1

𝑅𝑒
Δ𝑢𝑛 −

𝑏0
𝑑𝑡
𝑢𝑛 = ∇𝑝𝑛 + ෍

𝑗=1

𝑘
𝑏𝑗

𝑑𝑡
𝑢𝑛−𝑗 + 𝑎𝑗 𝑢𝑛−𝑗 ⋅ ∇𝑢𝑛−𝑗 + 𝑓𝑛

• Three velocity solves using CG with block Jacobi preconditioner (fast)

• One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (expensive)

𝑀0
−1 = 𝑅0

𝑇𝐴0
−1𝑅0 + σ𝑘=1

𝐾 𝑅𝑘
𝑇 ሚ𝐴𝑘

−1𝑅𝑘, key is to have a scalable coarse grid solver

Coarse grid (linear elements)
1. G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput Phys, 1991



Additive Schwarz Preconditioner on GPUs
• Coarse grid solved using an approximate Krylov solver

• Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit

• Low computational efficiency on GPUs
• 𝐴0 is on linear elements, too little data to keep the GPU busy.
• Many small kernels, dominated by kernel launch latency

GPU HW
activity

GPU 
streams

NVTX
host regions

CUDA API

𝑀0
−1 = 𝑅0

𝑇𝐴0
−1𝑅0 +෍

𝑘=1

𝐾

𝑅𝑘
𝑇 ሚ𝐴𝑘

−1𝑅𝑘



Task-decomposed Overlapped Preconditioner 
• Exploit available task-parallelism

• Launch the left and right part of 𝑀0
−1 in parallel on the device

• Launch independent work in parallel from different threads in an OpenMP region
• Launch tasks in separate streams to allow overlap and increase GPU utilization
• Maximise kernel overlap using stream priority to ensure progress in both stream

GPU HW
activity

GPU 
streams

NVTX
host regions

CUDA API

NVTX
host regions
(coarse-solve)

CUDA API
(coarse-solve)

𝑀0
−1 = 𝑅0

𝑇𝐴0
−1𝑅0 +෍

𝑘=1

𝐾

𝑅𝑘
𝑇 ሚ𝐴𝑘

−1𝑅𝑘

Thread 0 Thread 1

Stream 1 Stream 2



Performance Results
• Performance measurements on two of the EuroHPC-JU 

pre-exascale supercomputers LUMI and Leonardo

• Experiments were performed between 
• March–April 2023 on LUMI 
• April 2023 on Leonardo (pre-production)

• RBC in a cylinder with aspect ratio 1:10
• 𝑅𝑎 = 1015

• 108M elements, 7th order polynomials
• 37B unique grid points and more

than 148B degrees of freedom 

• Strong Scalability
• Average time per timestep (after transient)

• One MPI rank per logical GPU
• One rank per GCD (AMD)
• One rank per device (Nvidia)

System LUMI Leonardo

Computing device AMD MI250X Nvidia A100 (custom)

Peak Tflop FP64/s 47.9 (95.7 Matrix) 11.2 (22.4)

Peak BW/s 3300 1640

No. devices 10240 13824

Interconnect HPE Slingshot 11
200 GbE NICs (4x200 Gb/s)

Nvidia HDR
2x(2x100 Gb/s)

MPI Cray MPICH 8.1.18 OpenMPI 4.1.4

Compiler CCE 14.0.2 GCC 8.5.0

GPU Driver 5.16.9.22.20 520.61.05

CUDA/ROCm ROCm 5.2.3 CUDA 11.8



Performance Results

• Close to perfect parallel efficiency on both 
LUMI and Leonardo

• Close to perfect parallel efficiency with less 
than 7000 elements per logical GPU 

• Significantly reducing the smallest required 
problem size for strong scalability limits

• Improvements mainly due to the new 
overlapped pressure preconditioner

99% confidence intervals is illustrated as error bars



Summary
• Insight into Rayleigh-Bénard convection

• The question about an ultimate regime can only be settled through 
simulations made possible through the developments in this work

• In-situ data processing
• Hybrid data compression, streaming data to the CPU for online 

post-processing
while the simulation continues to run on the GPU

• New ways of analysing and processing data from simulations

• Task-decomposed overlapped pressure preconditioner
• Expressing more of the  available concurrency of the application
• Key ingredient to achieve good strong scalability on LUMI and 

Leonardo



Solving Large Systems at Exascale on GPU
Finite Element Solvers 

Project: “Excalibur SysGenX”

EuroHPC used: LUMI-G

Speaker: Chris Richardson (University of 
Cambridge)



Abstract
• Extreme scale simulations for science and engineering
• A framework to translate mathematics to a model
• Solving very large linear algebra problems on GPU
• Results from LUMI-G are promising



Electric flight

Nuclear fusion

Virus characterisation

Motivation



Finite Element Method 
(FEM)



• Domain Specific Language (DSL) 
to describe equations

• Turns symbolic code into machine instructions
• Examples: Poisson, Helmholtz, Maxwell, Stokes, Elasticity, etc.

 

 

 

 

(inner(grad(u), grad(v)) + k**2*u*v – f*v)*dx

(inner(grad(u), grad(v)) – rho*v)*dx

(inner(curl(A), curl(Av))/mu + sigma*(At-A)*Av)*dx

fenicsproject.org

FEniCS Project



FEniCS FEM workflow

Mesh Assemble
“for cell in mesh”

Solve
Sparse

Kernel

Ax = 
bInput Output

inner(grad(u), grad(v))*dx



Solving sparse Ax=b

=

 

A x b



LUMI-G •Testbed for “exascale”
•GPU nodes with direct MPI



 

 

 

 

 

Converge
d?

 

Preconditioner

StopStop

Conjugate Gradient Algorithm



P1

P2

P3

P-refinement multigrid



Preconditioning: p-multigrid
P P

R RAMG
“black 
box”

hypre, amgX 
rocalution

“Coarse Grid”

“Finest Grid” P3P2P1

Restriction and Prolongation operators (R, P)



Multigrid
 

 

 

 

 

 

 

Kernels:
• scatter/gather (MPI)
• MatVec (prolong, 

restrict)
• Operator  “A” 

(residual, smoother)
• axpy

 



Multigrid
 

 

 

 

 

 

 

 

operator

axpy

operator

axpy

operator
axpy

restrict

prolong

operator
axpy

operator
axpy

Everything 
at n-1

Kernels:
• scatter/gather (MPI)
• MatVec (prolong, 

restrict)
• Operator  “A” 

(residual, smoother)
• axpy



Forward operator 
y=Ax

• Forward operator is the most expensive 
part of the solver

• Maybe don’t need to form matrix, just 
“action”?

• When “matrix” is split across processes, 
need to update (MPI) RHS (x) before 
and LHS (y) after each MatVec…

• Off-process part is small, so can 
overlap computation of the local part of 
the MatVec with communication of the 
off-process part

Process 
0

Process 
1



Without forming a matrix



Results from LUMI-G

“Perfect” weak scaling



Summary

• Very large FEM models can be solved with multigrid 
methods

• Distributed Sparse Matrix-Vector product is the main 
bottleneck

• We can get good scaling by overlapping 
communication and computation

• LUMI-G results are promising



Legio: a Framework for Fault Resilience in MPI

Project: EHPC-DEV-2023D10-018

EuroHPC used: Karolina

Speaker: Roberto ROCCO (Politecnico di Milano)



A (very) brief introduction to MPI

● Message Passing Interface
● De-facto standard for inter-process communication at scale since 1994
● Many communication schemes supported:

○ Point to point
○ Collective routines
○ Remote memory access
○ I/O
○ Process topologies

● Continuously developing with new features and possibilities

2



How do we use our HPC clusters

Question 53: How do you plan to make your application fault tolerant?

● Why do we need such an analysis?



Faults in HPC scenario

4

After an error is detected, 
the state of MPI may 
become undefined. 

The MPI standard



State of the Art Solutions

5

State Resilience
Mitigate damage, 

loose priority

Execution Resilience
Continue execution,

 but expertise needed,
 application dependent

State Resilience &
Execution Resilience

keep priority 



The Legio Fault Resilience Framework goals

● Simplify the use of the User Level Fault Mitigation extension 
(ULFM)…

○ Aim towards minimal code intrusiveness

● …for MPI applications supporting graceful degradation…
○ Despite losing some data, they still can produce meaningful results

● ...preserving their performance and scalability.
○ Checkpoint based solutions are not scalable
○ Faster recovery
○ No operation running alongside the application

7



The Legio framework overview

● Upon fault (abrupt termination), let survivor 
processes finish their execution

○ Manage presence of missing process

○ Result will differ, possibly an approximation of the 
correct one

● Integration through PMPI: catch all the calls to 
the MPI layer and perform resilience operations

● No changes in behaviour in fault-free 
executions

8



Design Principles: Transparency

Using the Legio framework should require the minimum amount of code 
changes in the application.

9

● Legio operates through PMPI, no code change needed.
○ Legio provides an API to check the status of the processes but its use is not mandatory

● The user must just link Legio to the application
● For more complex functionalities (like critical process management) the 

user may leverage some functions present in the Legio API.



Design Principles: Flexibility

● Legio supports most functionalities present in the latest version of the 
standard

○ Point-to-point
○ Collectives
○ RMA
○ I/O
○ Group collective communicator creation
○ Sessions
○ Dynamic process management

10

The use of Legio should not limit the application in the choice of the MPI 
functionalities to use.



Design Principles: Efficiency

● Legio operates only when performing MPI calls
○ No background thread running

● The additional code added by Legio scales at worst logarithmically with 
the size of communicators

● We were able to prove this point with our experiments…

11

The use of Legio should not compromise the scalability and performance of 
the application.



The experimental campaigns
We used CPU nodes of the 
Karolina cluster
● 2 x AMD Zen 2 EPYC™ 7H12, 

2.6 GHz
● 256 GB of RAM
● 128 MPI processes

12

We also used Marconi100 nodes
● 2 x IBM POWER9 AC922 2.6 GHz
● 256 GB of RAM
● 32 MPI processes



The experimental campaign applications

13

● Montecarlo photon simulation;

● Molecular docking;

● NAS Parallel benchmarks.



Some campaign results

14

Photon simulation, using 4 Karolina nodes
Measured the accuracy loss due to faults.

Molecular docking application, using 1 to 8 
Marconi100 nodes.



Some campaign results

15

Scalability of two group-
collective communicator creation 
functions, executed on a varying 
amount of Karolina nodes.

We measure the overhead 
compared to an execution 
without fault management 
features



How can YOU use it?

● Source code available at:
https://github.com/Robyroc/Legio

● It requires ULFM
○ Present in the latest versions of OpenMPI

● For any issue, feel free to mail me:
roberto.rocco@polimi.it

16



Next steps

● Evaluate the use of MPI Sessions to handle faults instead of ULFM
○ Upon failure, get rid of the Session and recreate it

● Measure the fault impact on energy consumptions
○ Also the impact of countermeasures like Legio

● Extend the range of MPI functionalities supported
○ Topologies
○ Persistent communication
○ …

● And much more!

17



Thank you for your attention.

18

We also acknowledge EuroHPC JU for awarding this 
project access to the Karolina CPU partition.
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Tinker-HP
Tinker-HP is a state of the art software package dedicated to molecular dynamics simulations 
and to hybrid QM/MM. Massively parallel implementation on CPUs and GPUs

• Advanced electrostatic interaction models (AMOEBA force field etc.)
• Several numerical methods (PCG, PME, Verlet integration etc.) 
• Parallel simulations of millions to billions of particles systems 

Deep-HP
● Extension of Tinker-HP
● A deep learning platform for polarizable molecular potentials 
● Deep learning coupled with Force Fields for biological simulations

Relevant publications for details : 
● https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00936
● https://pubs.acs.org/doi/10.1021/acs.jctc.0c01164

3
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What we do at Qubit Pharmaceuticals ? 

4

● Drug design platform, Atlas, 
● To discover, optimize & validate drug candidates 
● Complex computations at scale,
● Tinker-HP : MD simulations in this drug discovery pipeline. 

10s of thousands of GPU hours of 
MD simulations every month with 
Tinker-HP ! 
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Tinker-HP features to port 

Nvidia GPUs AMD GPUs

OpenACC OpenMP

CUDA Fortran & 
CUDA C++

HIP C++

Python (PyCuda etc.) Python (CUPY etc.)

CUDA libs 
(cufft,curand,Thrust)

ROCm libs 
(hipfft,hiprand,rocThrust)

NVSHMEM ROCSHMEM

Nvidia compilers 
(nvfortran, nvcc,pgi)

Cray (cce) + AMD 
(hipfc,hipcc)

Some key points of Nvidia version :
● 500+ source files (*.f,*.cu,*.h) → 

mostly Fortran source code 
● 200k + codes lines
● 80+ CUDA kernels + device fun.
● 1100+ OpenACC GPU kernels

Not a feature of the code itself but 
compiler environment needs porting

Why porting was absolutely necessary ?
given that Cray compiler can compile  

Fortran+OpenACC code ! 
● complex mix of OpenACC and CUDA code

5
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Work accomplished until now 

● Potential energy subroutines
● Atom-Atom pair lists generation

○ Fortran subroutines (ACC to OMP)
○ CUDA Fortran Kernels to HIP C++

● Memory management routines (allocation, memset, initialization etc.)
● Python side of DeepHP

○ PyCUDA to CUPY + DLpack 

~80 gpu kernels (info rocprof)
● OMP kernels
● GPU Library calls (hipfft,hipthrust etc.)
● 2 HIP C++ kernel 

WIP
~ 240 OMP kernels
~ 210 OMP memory update
~ 120 OMP enter data 
~ 60 OMP use_device_addr 
~ 35 OMP reductions 

6
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Discussion on some specific porting 
challenges we faced ! 

7
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Porting CUDA Fortran to HIP

● CUDA Fortran features 
○ An extension to standard Fortran : device, pinned, attribute,kernel loop 

directives,memory allocation

○ Even the host side Fortran code has to be ported to standard Fortran

● Indexing in Fortran (1:x) and HIP(0:x-1)
○ Some standard variables : threadID, warpID, laneID [index starts @ 1 ]

○ Several code specific Fortran arrays ( used C++ indexing) 

● Tool GPUFORT
○ Project to port CUDA Fortran to HIP , and OpenACC to OpenMP 

○ Project was discontinued 

● HIPFort module and ‘hipfc’ compiler wrapper installation

8
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CUDA Fortran Vs HIP C++ kernel

9
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Porting of Python part (DeepHP)
● Fortran, C and Python interface (iso_c_binding and CFFI package) 

○ CFFI : C Foreign Function Interface for Python

10

Import cupy as cp  
mem = cp.cuda.UnownedMemory(ptr, size_bytes, owner=ptr, device_id=0)
memptr = cp.cuda.MemoryPointer(mem, offset=0)
cp_array = cp.ndarray(shape, dtype=_ctype2dtype[ctype], memptr=memptr)
ga_dl = cp_array.toDlpack()
gTensor = torch.utils.dlpack.from_dlpack(ga_dl) 
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Pytorch’s OMP issue with Tinker-HP 
● Call to “torch.autograd.grad()” 

○ error: CCE OpenMP fatal error: omp_in_parallel attempted from non-OpenMP thread
● Debug test : call to “torch.set_num_threads(1)”

○ error: CCE OpenMP fatal error: omp_set_num_threads attempted from non-OpenMP 
thread

● Possible reason:
○ incompatibility between two OMP libs present at runtime (Cray + GCC) 

● Possible solutions:
○ compile pyTorch with CCE
○ compile pyTorch without OMP support with GCC
○ compile Tinker-HP with GCC
○ Introduce OMP threads in Python part (Cython etc.)
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Concluding remarks 

● Porting of a complicated scientific code is time taking
○ Difficult to follow a timeline  
○ Rigorous project

● External factors that impacted this project 
○ FS issues
○ Software issues

■ CCE (internal errors, OMP pragmas etc.)
■ lenient Nvidia compilers 

○ Slurm CPU+GPU binding
○ Evolving ROCm/HIP environment 

● Managing the software environment is not always

 easy

● WIP
○ Port rest of the code
○ Optimization 12

GPU execution pipeline with “rocprof”
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Thanks 
● EuroHPC :  CSC (Supercomputer LUMI)
● CINES-GENCI (Supercomputer Adastra)
● To Prof. Jean-Philip Piquemal, Louis Lagardere & 

Olivier Adjoua of Sorbonne University, Paris. 
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OpenACC to OpenMP
● Explicit mention of reduction clause
● Explicit mention of mapping for serial OMP kernels on GPU
● CCE compiler only warns at some wrong OMP pragmas, where it should send errors
● Some kernels work only for a certain number of teams & threads
● Issue with collapse of 3 loops with omp
● Explicit handling of CUDA streams in ACC, feature not present in OMP

Scalar initialization on GPU

!$omp target map(A)
A = 0.0d0
!$omp end target

!$omp target update from(A)   → good 
!$omp taget update from(A) —>  no compiler error ! 

ftn-790 ftn: WARNING EMPOLE3CGPU, File = empole3gpu.f, Line = 117, Column = 7
  Unknown or unsupported compiler directive or syntax error.

15
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Porting Compiler environment  
● Nvidia compilers (nvfortran,pgi,nvcc) to Cray + AMD compilers 

(cce,hipfc,hipcc)
● ~ 130 source files modified to get a working CPU version with CCE
● Porting of Makefiles 
● Impact of compiler flags (-hipa0 etc. )
● Lenient Nvidia compilers Vs CCE

○ Explicit interfaces for subroutines 
○ Module arrays 

■ Scope (local scope variables are visible in other subroutines) 
■ argument passing (module variables passed via subroutines arguments) 

16
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GPU execution pipeline with “rocprof”

17
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Workload Estimation and Load-Balancing of Discrete Element Method

Outline

Extended Discrete Element Method

 What is XDEM?

Parallelization of XDEM

 Domain Decomposition with MPI

 Load-Balancing

Workload Estimation for XDEM

 Toward better Load-Balancing

Preliminary Results

 Load Estimation and Imbalance

2
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What is XDEM?

Extended Discrete Element Method

3
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What is XDEM?
eXtended
  Discrete 
  Element 
  MethodSimulation software for

Particles Dynamics
● Force and torques
● Particle motion

Particles Conversion
● Heat and mass transfer
● Chemical reactions

Coupled with
● Computational Fluid Dynamics (CFD)
● Finite Element Method (FEM)

OpenFOAM

ANSYS Fluent

diffPack

CalculiX
deal.II

https://luxdem.uni.lu/software/

4
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Application Examples: XDEM

Hopper charge and dischargeBrittle Failure

5
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Application Examples: XDEM coupled with CFD

Iron & Slag production
in a Blast Furnace

Selective Laser Melting
in Additive Manufacturing

Wood Conversion 
in a Biomass Furnace

6
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Domain Decomposition with MPI
and Load-Balancing

Parallelization of XDEM

7



EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method    X. Besseron

Domain Decomposition in XDEM
Decomposing the set of particles?

 Particles move during the simulation

 Neighborhood relations change

 Create undetected dependencies

→ Would require frequent re-partitioning

Use a static regular grid to ‘store’ particles

 Find location of a particle in constant time

 Size of grid cells adapted for collision detection

 No missing communication

→ Re-partitioning only required in case of imbalance

8
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Partitioning and Load-Balancing for XDEM

Particles in the cell grid From grid to graph
 Node ← Cell
 Node weight ← f(nb particles) 

                      ~ Computation cost
 Edge ← Neighborhood relation
 Edge weight ← g(nb particles) 

                      ~ Communication cost
 Node Coordinates (topologic approaches)

Partitioning algorithm
 Orthogonal Recursive Bisection
 METIS
 SCOTCH
 Zoltan PHG, RCB, RIB, ...
 etc.

Objectives
 Balance the computation cost
 Minimize the communication cuts

Processor 0

Processor 1

Processor 2

Processor 3

9
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Example of Load-Balancing

Zoltan RCB
(Recursive Coordinate Bisection)

ORB
(Orthogonal Recursive Bisection)

SCOTCH K-wayZoltan RIB
(Recursive Inertial Bisection)

10
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Toward better Load-Balancing

Workload Estimation for XDEM

11
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Main Computations Phases in XDEM
Broad Phase: Fast but approximate scan to identify the pairs 
of particles that could interact

 uses an approximate shape (bounding volume)

Narrow Phase: Precise collision detection on the 
particle pairs identified in the broad-phase

 uses the actual shape (sphere, cube, cylinder, etc.)
 calculates the distance/overlap between particles

Apply Models: Apply the physics models to each pair of 
interacting particles

 accumulate contributions to each particle: 
Contact → force, torque, ... 
Conduction/Radiation → heat flux, ... 

Integration: Update the particle states by integrating the 
contributions from all the interacting partners

In
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n

D
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tio

n
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Weight estimation for load-balancing

How to estimate the computing cost ?

 Difficult to measure at the level of a single cell

 Multiple phases and different complexities

 Nb of interactions is difficult to estimate
n = nb of particles 

in a cell

Computation Phase Complexity

Broad-phase O( (nb particles in cell)2 )

Narrow-phase O( nb interactions )

Apply Models O( nb interactions )

Integration O( nb particles )

13

→ Workload estimation has a significant impact 
on the load-balancing and on the performance
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Load Estimation and Imbalance

Preliminary Results

14
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Profiling large scale execution
• Use ‘extra’ synchronizations to isolate the phases in the execution

15

→ Time spent in synchronization indicates imbalance between the processes

Hopper discharge 
with 5.5M particles

1000 timesteps
Partitioner: Zoltan-RCB
Cost function: 1+n2
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Measured Imbalance

16

Distribution of the computation time (excluding communication-related time)

Measured
Imbalance:               1.26                        1.27                       1.26                        1.24

Imbalance = Max Time / Avg Time
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Estimated Load vs Measured Load

17

• Discrepancy between the estimated and the measured load
• The load-balancing depends on a good load estimation

→ Propose an accurate load estimation function for XDEM (work-in-progress)

Estimated imbalance = 1.08

Measured imbalance = 1.24



Thank you for your attention !

Question?
Xavier Besseron

University of Luxembourg

LuXDEM Research Team
https://luxdem.uni.lu

Project:  Workload Estimation and Load-
Balancing of Discrete Element Method
Period: Sep. 2023 – Aug. 2024
EuroHPC used: MeluXina

We acknowledge EuroHPC JU for awarding this 
project access to MeluXina.

Some results presented in this 
research were carried out using 
the HPC facilities of the 
University of Luxembourg


