
QUANTUM ESPRESSO on heterogeneous architectures

Project: “EHPC-DEV-2023D06-013”

EuroHPC used: LUMI, Leonardo

Speaker: Ivan CARNIMEO (SISSA)

QUANTUM
ESPRESSO is an
integrated suite of
Open-Source
computer codes for
electronic-structure
calculations and
materials modeling
at the nanoscale. It is
based on
density-functional
theory, plane waves,
and
pseudopotentials.

The QUANTUM ESPRESSO project

QUANTUM ESPRESSO is routinely used to simulate large and complex
molecular systems. Clusters hosted at HPC centers play a crucial role to
enhance accuracy and use predictive methods.

The QUANTUM ESPRESSO project

QUANTUM ESPRESSO is an open
initiative involving a large
community of developers and
users from different regions of
the world

Geographic distribution of the authors
of articles citing the main reference
articles as QUANTUM ESPRESSO

Data
provided by
courtesy of
the QUANTUM
ESPRESSO
foundation

The QUANTUM ESPRESSO project

35000+ downloads
20000+ citations
50000+ authors

Geographic
distribution of
downloads from the
QE website since the
beginning of 2022

The QUANTUM ESPRESSO project

Data
provided by
courtesy of
the QUANTUM
ESPRESSO
foundation

CoE for HPC applications in materials science

exploit frontier HPC
for material science research
in strong link with scientific

communities

CODE PORTING

HTC ECOSYSTEM

CO-DESIGN

Materials design at the Exascale

http://www.max-centre.eu/

ICSC National Research Centre
for High Performance Computing, Big Data and Quantum Computing

Spoke 7 – Flagship codes

https://www.supercomputing-icsc.it/

The current strategy for
performance portability is to
specialize the code to different
hardware configurations by using
directive based approaches:

OpenACC and OpenMP

Porting to heterogeneous architectures

Until qe-v6.8

Fortran/CUF/OpenACC

OpenACC OpenMP5

Fortran + OpenACC +
OpenMP5

Fortran CUDA
 Fortran

J. Chem. Phys. 152,
154105 (2020)

J. Chem. Theory
Comput. 19, 6992
(2023)

From qe-v7.0

Under development

Goal

Porting to heterogeneous architectures

FFTXlibLinear Albebra
(BLAS/Lapack)

PWscf

ModulesKS_Solvers

Modularity enables interoperability and new programming models

MAINTAINABILITY

PORTABILITY

directives

multiple
back-ends

FLEXIBILITY

PERFORMANCE

Porting to heterogeneous architectures

Several parallelization schemes
are implemented and
integrated with GPU offload

Porting to heterogeneous architectures

12

CUF/OpenACC offload

The QUANTUM ESPRESSO
suite has been accelerated
using a mixed CUDA
Fortran/OpenACC scheme. A
version based on OpenMP
offloading is under heavy
development, in order to
enhance portability to
hardware from different
vendors.

CUF/OpenACC offload

Quantum ESPRESSO: one further step towards the exascale, I.
Carnimeo et al., JCTC, 19, 20, 6992-7006 (2023)

Delugas et al., Phys. Rev. B,, 107, 214452 (2023)
Gorni et al., Phys. Rev. B,, 107, L220410 (2023)

Chromium
Iodide, 7776

electrons, 1152
atoms

Magnon
dispersions along

the
high-symmetry
directions of the

BZ

CUF/OpenACC offload

Quantum ESPRESSO: one further step towards the exascale, I.
Carnimeo et al., JCTC, 19, 20, 6992-7006 (2023)

Silicon 100 surface, 512
electrons, 128 atoms

Phonon dispersions along the high-symmetry
directions of the BZ

CUF/OpenACC offload

FFTXlibLinear Albebra
(BLAS/Lapack)

PWscf

ModulesKS_Solvers

Basic features:

- loop offloading;

- global variables;
offloading and pinning;

- manage different
backends (linear algebra
and FFTs);

- streams and/or tasks (for
async batched FFTs).

OpenMP5 offload

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

subroutine abc_acc(v)

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

OpenACC + OpenMP5

#if def __OPENACC
 call abc_acc(arg)
#elif def __OPENMP
 call abc_omp(arg)
#endif

!$acc update device(arg)
!$omp target update to (arg)

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

subroutine abc_acc(v)

OpenACC + OpenMP5

#if def __OPENACC
 call abc_acc(arg)
#elif def __OPENMP
 call abc_omp(arg)
#endif

!$acc update device(arg)
!$omp target update to (arg)

subroutine abc_acc(v)
subroutine abc_omp(v)

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

subroutine abc_acc(v)

OpenACC + OpenMP5

call abc(arg, offload)

!$acc update device(arg)
!$omp target update to (arg)

interface abc
 subroutine abc_cpu(v,off)
 subroutine abc_acc(v,off)
 subroutine abc_omp(v,off)
end interface

H
os

t t
o

De
vi

ce
Ro

ut
in

e
ca

lls
In

te
rf

ac
es

OpenMP5 offload

OpenACC + OpenMP5

call abc(arg, offload)

!$acc update device(arg)
!$omp target update to (arg)

interface abc
 subroutine abc_cpu(v,off)
 subroutine abc_acc(v,off)
 subroutine abc_omp(v,off)
end interface

devXLib +
OpenACC +OpenMP5

call abc(arg, offload)

Call devXlib (arg, offload)

The Yambo group in
Modena is developing

a portable library
(devXLib) to manage

porting to
multiplatform

heterogeneous
architectures

…

Main developers:
N. Spallanzani (CNR-NANO)

G. Rossi (Intel)
A. Ferretti (CNR-NANO)

fft1d

cpy2dfft1d
fft1d
fft1d cpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to
inFFT

CPU GPU (streams) ● Batched 3d-FFT of the wave-function;

● the input array divided in 4 batches (on
bands);

● 1 stream for FFTs, 4 streams for data
movements;

● 4 async mpi communications (ISEND,
IRECV).

Notes:

○ non-asynchronous memcpy;

○ memcpy operations D2H/H2D much
more time consuming than FFT calls;

○ memcpy operations D2D same order of
FFT calls.

Batched FFTs - CUF, HIP

fft1d

cpy2d fft1d
fft1d

fft1dcpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to
inFFT

Batched FFTs - oneMKL

● ntasks associated to nbatches

● work in progress…

Au surface
~1600 electrons

112 atoms

Execution on LUMI

Chromium Iodide
~2700 electrons

480 atoms

Execution on LUMI

What’s next

● Complete the OpenMP porting of PWscf minor routines;

● FFT optimization with OpenMP

➔ Medium/large-size benchmarks

● Port QE codes other than PWscf (PHonon, CP, EELS, …);

● incorporate DevXlib.

● Pietro Delugas, SISSA
● Ivan Carnimeo, SISSA
● Fabrizio Ferrari Ruffino, CNR-IOM
● Oscar Baseggio, SISSA
● Riccardo Bertossa, SISSA
● Aurora Ponzi, CNR-IOM
● Stefano Baroni, SISSA, CNR-IOM
● Paolo Giannozzi, UniUD, CNR-IOM

● Laura Bellentani
● Sergio Orlandini
● Fabio Affinito

CINECA

● Francesca Garofalo

QUANTUM ESPRESSO Foundation

● Ye Luo (Argonne)
● Filippo Spiga (NVIDIA)
● Louis Stuber (NVIDIA)

Other collaborators and vendor technical support (chronological order)

Acknowledgments
QUANTUM ESPRESSO developers

● Giacomo Rossi (Intel)
● Ossian O’Reilly (AMD)
● Jakub Kurzak (AMD)

Exploring the Ultimate Regime of Turbulent Rayleigh-Bénard Convection
Through Unprecedented Spectral-Element Simulations

Project: Extreme-scale high-fidelity turbulence
simulations of convection and boundary layers using
accelerators (EHPC-EXT-2022E01-059)
EuroHPC used: LUMI and Leonardo
Speaker: Niclas JANSSON (KTH)

2023 ACM Gordon Bell Prize Finalist

Martin Karp Adalberto Perez Timofey Mukha Szilárd PállYi Ju Jiahui Liu

Tino Weinkauf Stefano MarkidisPhilipp SchlatterJörg SchumacherErwin Laure

N. Jansson et al., Exploring the Ultimate Regime of Turbulent Rayleigh-Bénard Convection Through Unprecedented Spectral-Element Simulations,
SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2023.

Turbulent thermal convection
• Applications in nature and technology

• From chip cooling, heat exchanges in power plants, to heat convection in the
Earth’s mantle and the sun.

• Rayleigh-Bénard convection: Canonical turbulent convection with
fundamental open question: Is there an ultimate regime, i.e. anomalous
scaling of Nusselt number (heat transfer) and Rayleigh number (buoyancy)?

• Long-standing open issue in turbulence (Kraichnan 1962)
• Difficult to conduct controlled experiments at high Rayleigh numbers 𝑅𝑎 > 1015

• Challenges with direct numerical simulations
• Large computational cost due to resolution needs: Τ𝐻 𝜂 3 ∼ 𝑅𝑎9/8

• Numerical method with minimal dissipative and dispersive errors
to capture and track small scales in time

• Produces unmanageable volumes of data
• Long integration times for steady state statistics
• Efficient implementation on modern hardware

Cooled wall

Heated wall

Illustration of the
canonical problem at
𝑅𝑎 = 1013, iso-surfaces
of temperature

Introduction
• Exascale will require either unreasonably large problem sizes or

significantly improved efficiency of current methods
• Finite-Volume LES of a full car on the entire K computer (京) required more

than 100 billion grid points to run efficiently
• What problem size is needed to fill the 379 PFlop/s LUMI…

• High-order methods
• Attractive numerical properties, small dispersion errors and more “accuracy”

per degree of freedom
• Better suited to take advantage of modern hardware (accelerators)

Dardel: 56 nodes, 448 MI250X GCDs, ≈10 PFlop/s

京: 82944 nodes, 663552 Cores, 10 PFlop/s

...but we rather scale out
our problems...

Accelerators works
best with a lot of data!

Spectral Elements
• Finite Elements with high-order basis functions

• 𝑁-th order Legendre-Lagrange polynomials 𝑙𝑖 𝜉
• Gauss-Lobatto-Legendre quadrature points 𝜉𝑖
• Fast tensor product formulation

• 𝑢𝑒 𝜉, 𝜂, 𝛾 = σ𝑖,𝑗,𝑘
𝑁 𝑢𝑖,𝑗,𝑘

𝑒 𝑙𝑖 𝜉 𝑙𝑗 𝜂 𝑙𝑘 𝛾

• High-order at low cost! (Level 3 BLAS!)

• Too expensive to assemble matrices
• Element stiffness matrices 𝐴𝑖,𝑗

𝑘 with 𝑶(𝑵𝟔) non-zeros

• Matrix free formulation, key to achieve good performance in SEM
• Unassembled matrix 𝐴𝐿 = diag 𝐴1, 𝐴2, … , 𝐴𝐸 and functions 𝑢𝐿 = {𝑢𝑒}𝑒=1

𝐸

• Operation count is only 𝑶(𝑵𝟒) not 𝑶(𝑵𝟔)

• Boolean gather/scatter matrix 𝑄𝑇 and 𝑄
• Ensure continuity of functions on the element level 𝑢 = 𝑄𝑇𝑢𝐿 and 𝑢𝐿 = 𝑄𝑢

• 𝑄 and 𝑄𝑇 formed, only the action 𝑄𝑄𝑇 is used
• Matrix-vector product 𝑤 = 𝐴𝑢 ⇒ 𝑤𝐿 = 𝑄𝑄𝑇𝐴𝐿𝑢𝐿

1: A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 1984
2. M. O. Deville, P. F. Fischer, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, 2002

3: P.F. Fischer, J.W. Lottes, S.G. Kerkemeier, Nek5000 Web page: http://nek5000.mcs.anl.gov, 2008
4: H.M. Tufo, P.F Fischer, Terascale Spectral Element Algorithms and Implementations, Gordon-Bell prize 1999

http://nek5000.mcs.anl.gov

Portable Spectral Element Framework
• High-order spectral element flow solver

• Incompressible Navier-Stokes equations
• Matrix-free formulation, small tensor products
• Gather-scatter operationst between elements

• Modern object-oriented approach (Fortran 2008)

• Various hardware-backends
• CPUs, GPUs down to exotic vector processors and FPGAs

• Device abstraction layer for accelerators (CUDA/HIP/OpenCL)

• Modern software engineering (pFUnit, ReFrame, Spack)

> spack install neko+cuda ExtremeFLOW/neko

GPU

SX

CPU

www.neko.cfd

Device Abstraction Layer
How to interface Fortran with accelerators?

• Native CUDA/HIP/OpenCL implementation via C-interfaces

• Device pointers in each derived type

• Abstraction layer hiding memory management

• Hash table associating x with x_d

• Kernels invoked from the object hierarchy
via C interfaces (𝐴𝑥, vector ops)

• Wrapper functions for each supported accelerator backend
• Templated (CUDA/HIP) or pre-processor macros (OpenCL)

for runtime parameters

• Auto/runtime tuning based on polynomial order

subroutinefield_init(f,…)
type(field_t) :: f
...
callallocate(f%x(…,…,…,…,)
calldevice_alloc(f%x_d, size)
calldevice_associate(f%x, f%x_d)

cudaM alloc hipM alloc clCreateBuffer

src/
|
|--m ath
| -̀-bcknd
| |--cpu
| |--device
| | |--cuda
| | |--hip
| | -̀-opencl
| |--sx
| -̀-xsm m

Gather-Scatter
• Uses indirect addressing and are (mostly) non-injective

• Topology aware optimisations
• Facets (single neighbour), red points

• Injective, vectorizable (always operating on sorted tuples)

• Non facets (arbitrary number of neighbours), green points
• Cannot be made injective, not vectorizable (small amount)

• Multiple levels of overlapping communication and computation
• Overlapping with non-blocking MPI (device aware)
• Asynchronous GPU kernels (neighbours in streams)
• Auto/runtime tuning of all combinations

Async.
processing of

neigh. data

Synchronous and Hybrid Data Compression
• Lossy compression, physics-based method:

discard data not associated with the most energetic flow motions1

• Lossless compression:
ADIOS2 operator with runtime configuration

• 97% data reduction with a relative error of 2.5%

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data reduction,” Flow,
Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

Fortran functions
C/C++ functions
called in Fortran C++ functions

Nek-proc adaptor

Data passing by
address

Lossy compression

Lossless
compression

Data compressor

Output through IO

Data passing by
address

in-situ function

Lossy compression

Data compressorNek-proc adaptor

Data selection

Proc-wrtr adaptor
Data passing by

address

ADIOS writer
ADIOS insituMPI

writer

Lossless compression

Output through IO

Data compressor ADIOS reader
ADIOS insituMPI

reader

Rdr-proc adaptor
Data passing by

address

in-situ function
Frequency

Frequency

Compressed velocity field 𝑅𝑎 = 1011

In-situ approach2

Synchronous compression

Hybrid compression

2: Y. Ju et al., “In-Situ Techniques on GPU-Accelerated Data-Intensive Applications,” eScience, 2023.

Performance Baseline
• Full machine runs towards the end of the LUMI-G pilot phase

• DNS of flow past a circular cylinder at 𝑅𝑒 = 50,000
• 113M elements
• 7th order polynomials (8 GLL points)

• Simulation restarted from prebaked low-order runs
• Restart checkpoint: 453GB
• Extrapolated to 7th order polynomials
• Computed solution (snapshot): 1.5TB

• Preliminary results
• Achieved close to 80% parallel efficiency
• Using 20%, 40% and 80% of the entire machine

Numerical Method 𝑷𝑵 − 𝑷𝑵
• Time integration is performed using an implicit-explicit scheme (BDF𝑘/EXT𝑘)

෍

𝑗=0

𝑘
𝑏𝑗

𝑑𝑡
𝑢𝑛−𝑗 = −∇𝑝𝑛 +

1

𝑅𝑒
∇2𝑢𝑛 +෍

𝑗=1

𝑘

𝑎𝑗 𝑢𝑛−𝑗 ⋅ ∇𝑢𝑛−𝑗 + 𝑓𝑛

with 𝑏𝑘 and 𝑎𝑘 coefficients of the implicit-explicit scheme, solving at time-step 𝑛

Δ𝑝𝑛 =෍

𝑗=1

𝑘

𝑎𝑗 𝑢𝑛−𝑗 ⋅ ∇𝑢𝑛−𝑗 + 𝑓𝑛

1

𝑅𝑒
Δ𝑢𝑛 −

𝑏0
𝑑𝑡
𝑢𝑛 = ∇𝑝𝑛 + ෍

𝑗=1

𝑘
𝑏𝑗

𝑑𝑡
𝑢𝑛−𝑗 + 𝑎𝑗 𝑢𝑛−𝑗 ⋅ ∇𝑢𝑛−𝑗 + 𝑓𝑛

• Three velocity solves using CG with block Jacobi preconditioner (fast)

• One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (expensive)

𝑀0
−1 = 𝑅0

𝑇𝐴0
−1𝑅0 + σ𝑘=1

𝐾 𝑅𝑘
𝑇 ሚ𝐴𝑘

−1𝑅𝑘, key is to have a scalable coarse grid solver

Coarse grid (linear elements)
1. G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput Phys, 1991

Additive Schwarz Preconditioner on GPUs
• Coarse grid solved using an approximate Krylov solver

• Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit

• Low computational efficiency on GPUs
• 𝐴0 is on linear elements, too little data to keep the GPU busy.
• Many small kernels, dominated by kernel launch latency

GPU HW
activity

GPU
streams

NVTX
host regions

CUDA API

𝑀0
−1 = 𝑅0

𝑇𝐴0
−1𝑅0 +෍

𝑘=1

𝐾

𝑅𝑘
𝑇 ሚ𝐴𝑘

−1𝑅𝑘

Task-decomposed Overlapped Preconditioner
• Exploit available task-parallelism

• Launch the left and right part of 𝑀0
−1 in parallel on the device

• Launch independent work in parallel from different threads in an OpenMP region
• Launch tasks in separate streams to allow overlap and increase GPU utilization
• Maximise kernel overlap using stream priority to ensure progress in both stream

GPU HW
activity

GPU
streams

NVTX
host regions

CUDA API

NVTX
host regions
(coarse-solve)

CUDA API
(coarse-solve)

𝑀0
−1 = 𝑅0

𝑇𝐴0
−1𝑅0 +෍

𝑘=1

𝐾

𝑅𝑘
𝑇 ሚ𝐴𝑘

−1𝑅𝑘

Thread 0 Thread 1

Stream 1 Stream 2

Performance Results
• Performance measurements on two of the EuroHPC-JU

pre-exascale supercomputers LUMI and Leonardo

• Experiments were performed between
• March–April 2023 on LUMI
• April 2023 on Leonardo (pre-production)

• RBC in a cylinder with aspect ratio 1:10
• 𝑅𝑎 = 1015

• 108M elements, 7th order polynomials
• 37B unique grid points and more

than 148B degrees of freedom

• Strong Scalability
• Average time per timestep (after transient)

• One MPI rank per logical GPU
• One rank per GCD (AMD)
• One rank per device (Nvidia)

System LUMI Leonardo

Computing device AMD MI250X Nvidia A100 (custom)

Peak Tflop FP64/s 47.9 (95.7 Matrix) 11.2 (22.4)

Peak BW/s 3300 1640

No. devices 10240 13824

Interconnect HPE Slingshot 11
200 GbE NICs (4x200 Gb/s)

Nvidia HDR
2x(2x100 Gb/s)

MPI Cray MPICH 8.1.18 OpenMPI 4.1.4

Compiler CCE 14.0.2 GCC 8.5.0

GPU Driver 5.16.9.22.20 520.61.05

CUDA/ROCm ROCm 5.2.3 CUDA 11.8

Performance Results

• Close to perfect parallel efficiency on both
LUMI and Leonardo

• Close to perfect parallel efficiency with less
than 7000 elements per logical GPU

• Significantly reducing the smallest required
problem size for strong scalability limits

• Improvements mainly due to the new
overlapped pressure preconditioner

99% confidence intervals is illustrated as error bars

Summary
• Insight into Rayleigh-Bénard convection

• The question about an ultimate regime can only be settled through
simulations made possible through the developments in this work

• In-situ data processing
• Hybrid data compression, streaming data to the CPU for online

post-processing
while the simulation continues to run on the GPU

• New ways of analysing and processing data from simulations

• Task-decomposed overlapped pressure preconditioner
• Expressing more of the available concurrency of the application
• Key ingredient to achieve good strong scalability on LUMI and

Leonardo

Solving Large Systems at Exascale on GPU
Finite Element Solvers

Project: “Excalibur SysGenX”

EuroHPC used: LUMI-G

Speaker: Chris Richardson (University of
Cambridge)

Abstract
• Extreme scale simulations for science and engineering
• A framework to translate mathematics to a model
• Solving very large linear algebra problems on GPU
• Results from LUMI-G are promising

Electric flight

Nuclear fusion

Virus characterisation

Motivation

Finite Element Method
(FEM)

• Domain Specific Language (DSL)
to describe equations

• Turns symbolic code into machine instructions
• Examples: Poisson, Helmholtz, Maxwell, Stokes, Elasticity, etc.

(inner(grad(u), grad(v)) + k**2*u*v – f*v)*dx

(inner(grad(u), grad(v)) – rho*v)*dx

(inner(curl(A), curl(Av))/mu + sigma*(At-A)*Av)*dx

fenicsproject.org

FEniCS Project

FEniCS FEM workflow

Mesh Assemble
“for cell in mesh”

Solve
Sparse

Kernel

Ax =
bInput Output

inner(grad(u), grad(v))*dx

Solving sparse Ax=b

=

A x b

LUMI-G •Testbed for “exascale”
•GPU nodes with direct MPI

Converge
d?

Preconditioner

StopStop

Conjugate Gradient Algorithm

P1

P2

P3

P-refinement multigrid

Preconditioning: p-multigrid
P P

R RAMG
“black
box”

hypre, amgX
rocalution

“Coarse Grid”

“Finest Grid” P3P2P1

Restriction and Prolongation operators (R, P)

Multigrid

Kernels:
• scatter/gather (MPI)
• MatVec (prolong,

restrict)
• Operator “A”

(residual, smoother)
• axpy

Multigrid

operator

axpy

operator

axpy

operator
axpy

restrict

prolong

operator
axpy

operator
axpy

Everything
at n-1

Kernels:
• scatter/gather (MPI)
• MatVec (prolong,

restrict)
• Operator “A”

(residual, smoother)
• axpy

Forward operator
y=Ax

• Forward operator is the most expensive
part of the solver

• Maybe don’t need to form matrix, just
“action”?

• When “matrix” is split across processes,
need to update (MPI) RHS (x) before
and LHS (y) after each MatVec…

• Off-process part is small, so can
overlap computation of the local part of
the MatVec with communication of the
off-process part

Process
0

Process
1

Without forming a matrix

Results from LUMI-G

“Perfect” weak scaling

Summary

• Very large FEM models can be solved with multigrid
methods

• Distributed Sparse Matrix-Vector product is the main
bottleneck

• We can get good scaling by overlapping
communication and computation

• LUMI-G results are promising

Legio: a Framework for Fault Resilience in MPI

Project: EHPC-DEV-2023D10-018

EuroHPC used: Karolina

Speaker: Roberto ROCCO (Politecnico di Milano)

A (very) brief introduction to MPI

● Message Passing Interface
● De-facto standard for inter-process communication at scale since 1994
● Many communication schemes supported:

○ Point to point
○ Collective routines
○ Remote memory access
○ I/O
○ Process topologies

● Continuously developing with new features and possibilities

2

How do we use our HPC clusters

Question 53: How do you plan to make your application fault tolerant?

● Why do we need such an analysis?

Faults in HPC scenario

4

After an error is detected,
the state of MPI may
become undefined.

The MPI standard

State of the Art Solutions

5

State Resilience
Mitigate damage,

loose priority

Execution Resilience
Continue execution,

 but expertise needed,
 application dependent

State Resilience &
Execution Resilience

keep priority

The Legio Fault Resilience Framework goals

● Simplify the use of the User Level Fault Mitigation extension
(ULFM)…

○ Aim towards minimal code intrusiveness

● …for MPI applications supporting graceful degradation…
○ Despite losing some data, they still can produce meaningful results

● ...preserving their performance and scalability.
○ Checkpoint based solutions are not scalable
○ Faster recovery
○ No operation running alongside the application

7

The Legio framework overview

● Upon fault (abrupt termination), let survivor
processes finish their execution

○ Manage presence of missing process

○ Result will differ, possibly an approximation of the
correct one

● Integration through PMPI: catch all the calls to
the MPI layer and perform resilience operations

● No changes in behaviour in fault-free
executions

8

Design Principles: Transparency

Using the Legio framework should require the minimum amount of code
changes in the application.

9

● Legio operates through PMPI, no code change needed.
○ Legio provides an API to check the status of the processes but its use is not mandatory

● The user must just link Legio to the application
● For more complex functionalities (like critical process management) the

user may leverage some functions present in the Legio API.

Design Principles: Flexibility

● Legio supports most functionalities present in the latest version of the
standard

○ Point-to-point
○ Collectives
○ RMA
○ I/O
○ Group collective communicator creation
○ Sessions
○ Dynamic process management

10

The use of Legio should not limit the application in the choice of the MPI
functionalities to use.

Design Principles: Efficiency

● Legio operates only when performing MPI calls
○ No background thread running

● The additional code added by Legio scales at worst logarithmically with
the size of communicators

● We were able to prove this point with our experiments…

11

The use of Legio should not compromise the scalability and performance of
the application.

The experimental campaigns
We used CPU nodes of the
Karolina cluster
● 2 x AMD Zen 2 EPYC™ 7H12,

2.6 GHz
● 256 GB of RAM
● 128 MPI processes

12

We also used Marconi100 nodes
● 2 x IBM POWER9 AC922 2.6 GHz
● 256 GB of RAM
● 32 MPI processes

The experimental campaign applications

13

● Montecarlo photon simulation;

● Molecular docking;

● NAS Parallel benchmarks.

Some campaign results

14

Photon simulation, using 4 Karolina nodes
Measured the accuracy loss due to faults.

Molecular docking application, using 1 to 8
Marconi100 nodes.

Some campaign results

15

Scalability of two group-
collective communicator creation
functions, executed on a varying
amount of Karolina nodes.

We measure the overhead
compared to an execution
without fault management
features

How can YOU use it?

● Source code available at:
https://github.com/Robyroc/Legio

● It requires ULFM
○ Present in the latest versions of OpenMPI

● For any issue, feel free to mail me:
roberto.rocco@polimi.it

16

Next steps

● Evaluate the use of MPI Sessions to handle faults instead of ULFM
○ Upon failure, get rid of the Session and recreate it

● Measure the fault impact on energy consumptions
○ Also the impact of countermeasures like Legio

● Extend the range of MPI functionalities supported
○ Topologies
○ Persistent communication
○ …

● And much more!

17

Thank you for your attention.

18

We also acknowledge EuroHPC JU for awarding this
project access to the Karolina CPU partition.

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

1

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Contents

● Tinker-HP & DeepHP
● What we do at Qubit Pharmaceuticals ?
● Features to Port
● Work accomplished (until now)
● Some specific portings

○ Port of CUDA Fortran Kernels to HIP C++
○ Port of python part (DeepHP) etc.

● Concluding remarks

2

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Tinker-HP
Tinker-HP is a state of the art software package dedicated to molecular dynamics simulations
and to hybrid QM/MM. Massively parallel implementation on CPUs and GPUs

• Advanced electrostatic interaction models (AMOEBA force field etc.)
• Several numerical methods (PCG, PME, Verlet integration etc.)
• Parallel simulations of millions to billions of particles systems

Deep-HP
● Extension of Tinker-HP
● A deep learning platform for polarizable molecular potentials
● Deep learning coupled with Force Fields for biological simulations

Relevant publications for details :
● https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00936
● https://pubs.acs.org/doi/10.1021/acs.jctc.0c01164

3

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

What we do at Qubit Pharmaceuticals ?

4

● Drug design platform, Atlas,
● To discover, optimize & validate drug candidates
● Complex computations at scale,
● Tinker-HP : MD simulations in this drug discovery pipeline.

10s of thousands of GPU hours of
MD simulations every month with
Tinker-HP !

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Tinker-HP features to port

Nvidia GPUs AMD GPUs

OpenACC OpenMP

CUDA Fortran &
CUDA C++

HIP C++

Python (PyCuda etc.) Python (CUPY etc.)

CUDA libs
(cufft,curand,Thrust)

ROCm libs
(hipfft,hiprand,rocThrust)

NVSHMEM ROCSHMEM

Nvidia compilers
(nvfortran, nvcc,pgi)

Cray (cce) + AMD
(hipfc,hipcc)

Some key points of Nvidia version :
● 500+ source files (*.f,*.cu,*.h) →

mostly Fortran source code
● 200k + codes lines
● 80+ CUDA kernels + device fun.
● 1100+ OpenACC GPU kernels

Not a feature of the code itself but
compiler environment needs porting

Why porting was absolutely necessary ?
given that Cray compiler can compile

Fortran+OpenACC code !
● complex mix of OpenACC and CUDA code

5

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Work accomplished until now

● Potential energy subroutines
● Atom-Atom pair lists generation

○ Fortran subroutines (ACC to OMP)
○ CUDA Fortran Kernels to HIP C++

● Memory management routines (allocation, memset, initialization etc.)
● Python side of DeepHP

○ PyCUDA to CUPY + DLpack

~80 gpu kernels (info rocprof)
● OMP kernels
● GPU Library calls (hipfft,hipthrust etc.)
● 2 HIP C++ kernel

WIP
~ 240 OMP kernels
~ 210 OMP memory update
~ 120 OMP enter data
~ 60 OMP use_device_addr
~ 35 OMP reductions

6

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Discussion on some specific porting
challenges we faced !

7

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Porting CUDA Fortran to HIP

● CUDA Fortran features
○ An extension to standard Fortran : device, pinned, attribute,kernel loop

directives,memory allocation

○ Even the host side Fortran code has to be ported to standard Fortran

● Indexing in Fortran (1:x) and HIP(0:x-1)
○ Some standard variables : threadID, warpID, laneID [index starts @ 1]

○ Several code specific Fortran arrays (used C++ indexing)

● Tool GPUFORT
○ Project to port CUDA Fortran to HIP , and OpenACC to OpenMP

○ Project was discontinued

● HIPFort module and ‘hipfc’ compiler wrapper installation

8

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

CUDA Fortran Vs HIP C++ kernel

9

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Porting of Python part (DeepHP)
● Fortran, C and Python interface (iso_c_binding and CFFI package)

○ CFFI : C Foreign Function Interface for Python

10

Import cupy as cp
mem = cp.cuda.UnownedMemory(ptr, size_bytes, owner=ptr, device_id=0)
memptr = cp.cuda.MemoryPointer(mem, offset=0)
cp_array = cp.ndarray(shape, dtype=_ctype2dtype[ctype], memptr=memptr)
ga_dl = cp_array.toDlpack()
gTensor = torch.utils.dlpack.from_dlpack(ga_dl)

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

11

Pytorch’s OMP issue with Tinker-HP
● Call to “torch.autograd.grad()”

○ error: CCE OpenMP fatal error: omp_in_parallel attempted from non-OpenMP thread
● Debug test : call to “torch.set_num_threads(1)”

○ error: CCE OpenMP fatal error: omp_set_num_threads attempted from non-OpenMP
thread

● Possible reason:
○ incompatibility between two OMP libs present at runtime (Cray + GCC)

● Possible solutions:
○ compile pyTorch with CCE
○ compile pyTorch without OMP support with GCC
○ compile Tinker-HP with GCC
○ Introduce OMP threads in Python part (Cython etc.)

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Concluding remarks

● Porting of a complicated scientific code is time taking
○ Difficult to follow a timeline
○ Rigorous project

● External factors that impacted this project
○ FS issues
○ Software issues

■ CCE (internal errors, OMP pragmas etc.)
■ lenient Nvidia compilers

○ Slurm CPU+GPU binding
○ Evolving ROCm/HIP environment

● Managing the software environment is not always

 easy

● WIP
○ Port rest of the code
○ Optimization 12

GPU execution pipeline with “rocprof”

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Thanks
● EuroHPC : CSC (Supercomputer LUMI)
● CINES-GENCI (Supercomputer Adastra)
● To Prof. Jean-Philip Piquemal, Louis Lagardere &

Olivier Adjoua of Sorbonne University, Paris.

13

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

14

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

OpenACC to OpenMP
● Explicit mention of reduction clause
● Explicit mention of mapping for serial OMP kernels on GPU
● CCE compiler only warns at some wrong OMP pragmas, where it should send errors
● Some kernels work only for a certain number of teams & threads
● Issue with collapse of 3 loops with omp
● Explicit handling of CUDA streams in ACC, feature not present in OMP

Scalar initialization on GPU

!$omp target map(A)
A = 0.0d0
!$omp end target

!$omp target update from(A) → good
!$omp taget update from(A) —> no compiler error !

ftn-790 ftn: WARNING EMPOLE3CGPU, File = empole3gpu.f, Line = 117, Column = 7
 Unknown or unsupported compiler directive or syntax error.

15

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

Porting Compiler environment
● Nvidia compilers (nvfortran,pgi,nvcc) to Cray + AMD compilers

(cce,hipfc,hipcc)
● ~ 130 source files modified to get a working CPU version with CCE
● Porting of Makefiles
● Impact of compiler flags (-hipa0 etc.)
● Lenient Nvidia compilers Vs CCE

○ Explicit interfaces for subroutines
○ Module arrays

■ Scope (local scope variables are visible in other subroutines)
■ argument passing (module variables passed via subroutines arguments)

16

© QUBIT PHARMACEUTICALS | PROPRIETARY & CONFIDENTIAL

Qubit Pharmaceuticals

GPU execution pipeline with “rocprof”

17

Workload Estimation and Load-Balancing
of Discrete Element Method

Project: Workload Estimation and Load-
Balancing of Discrete Element Method
EuroHPC used: MeluXina

Speaker: Xavier BESSERON (Uni. of
Luxembourg)

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Workload Estimation and Load-Balancing of Discrete Element Method

Outline

Extended Discrete Element Method

 What is XDEM?

Parallelization of XDEM

 Domain Decomposition with MPI

 Load-Balancing

Workload Estimation for XDEM

 Toward better Load-Balancing

Preliminary Results

 Load Estimation and Imbalance

2

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

What is XDEM?

Extended Discrete Element Method

3

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

What is XDEM?
eXtended
 Discrete
 Element
 MethodSimulation software for

Particles Dynamics
● Force and torques
● Particle motion

Particles Conversion
● Heat and mass transfer
● Chemical reactions

Coupled with
● Computational Fluid Dynamics (CFD)
● Finite Element Method (FEM)

OpenFOAM

ANSYS Fluent

diffPack

CalculiX
deal.II

https://luxdem.uni.lu/software/

4

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Application Examples: XDEM

Hopper charge and dischargeBrittle Failure

5

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Application Examples: XDEM coupled with CFD

Iron & Slag production
in a Blast Furnace

Selective Laser Melting
in Additive Manufacturing

Wood Conversion
in a Biomass Furnace

6

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Domain Decomposition with MPI
and Load-Balancing

Parallelization of XDEM

7

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Domain Decomposition in XDEM
Decomposing the set of particles?

 Particles move during the simulation

 Neighborhood relations change

 Create undetected dependencies

→ Would require frequent re-partitioning

Use a static regular grid to ‘store’ particles

 Find location of a particle in constant time

 Size of grid cells adapted for collision detection

 No missing communication

→ Re-partitioning only required in case of imbalance

8

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Partitioning and Load-Balancing for XDEM

Particles in the cell grid From grid to graph
 Node ← Cell
 Node weight ← f(nb particles)

 ~ Computation cost
 Edge ← Neighborhood relation
 Edge weight ← g(nb particles)

 ~ Communication cost
 Node Coordinates (topologic approaches)

Partitioning algorithm
 Orthogonal Recursive Bisection
 METIS
 SCOTCH
 Zoltan PHG, RCB, RIB, ...
 etc.

Objectives
 Balance the computation cost
 Minimize the communication cuts

Processor 0

Processor 1

Processor 2

Processor 3

9

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Example of Load-Balancing

Zoltan RCB
(Recursive Coordinate Bisection)

ORB
(Orthogonal Recursive Bisection)

SCOTCH K-wayZoltan RIB
(Recursive Inertial Bisection)

10

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Toward better Load-Balancing

Workload Estimation for XDEM

11

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Main Computations Phases in XDEM
Broad Phase: Fast but approximate scan to identify the pairs
of particles that could interact

 uses an approximate shape (bounding volume)

Narrow Phase: Precise collision detection on the
particle pairs identified in the broad-phase

 uses the actual shape (sphere, cube, cylinder, etc.)
 calculates the distance/overlap between particles

Apply Models: Apply the physics models to each pair of
interacting particles

 accumulate contributions to each particle:
Contact → force, torque, ...
Conduction/Radiation → heat flux, ...

Integration: Update the particle states by integrating the
contributions from all the interacting partners

In
te

ra
ct

io
n

D
et

ec
tio

n

12

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Weight estimation for load-balancing

How to estimate the computing cost ?

 Difficult to measure at the level of a single cell

 Multiple phases and different complexities

 Nb of interactions is difficult to estimate
n = nb of particles

in a cell

Computation Phase Complexity

Broad-phase O((nb particles in cell)2)

Narrow-phase O(nb interactions)

Apply Models O(nb interactions)

Integration O(nb particles)

13

→ Workload estimation has a significant impact
on the load-balancing and on the performance

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Load Estimation and Imbalance

Preliminary Results

14

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Profiling large scale execution
• Use ‘extra’ synchronizations to isolate the phases in the execution

15

→ Time spent in synchronization indicates imbalance between the processes

Hopper discharge
with 5.5M particles

1000 timesteps
Partitioner: Zoltan-RCB
Cost function: 1+n2

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Measured Imbalance

16

Distribution of the computation time (excluding communication-related time)

Measured
Imbalance: 1.26 1.27 1.26 1.24

Imbalance = Max Time / Avg Time

EuroHPC User Day 2023 Workload Estimation and Load-Balancing of Discrete Element Method X. Besseron

Estimated Load vs Measured Load

17

• Discrepancy between the estimated and the measured load
• The load-balancing depends on a good load estimation

→ Propose an accurate load estimation function for XDEM (work-in-progress)

Estimated imbalance = 1.08

Measured imbalance = 1.24

Thank you for your attention !

Question?
Xavier Besseron

University of Luxembourg

LuXDEM Research Team
https://luxdem.uni.lu

Project: Workload Estimation and Load-
Balancing of Discrete Element Method
Period: Sep. 2023 – Aug. 2024
EuroHPC used: MeluXina

We acknowledge EuroHPC JU for awarding this
project access to MeluXina.

Some results presented in this
research were carried out using
the HPC facilities of the
University of Luxembourg

