2023 Göteborg

Introduction

Dirk Pleiter (KTH), 2023-03-21

Paving the Path for Digital Twins on HPC

Goals for this Session

- **HPC** communicate

Create an understanding of the Digital Twin concept within the

 Initiate a discussion on how the design and operation of HPC infrastructures need to change for realising Digital Twin projects Discussion of governance and resource allocation aspects

2023 Göteborg

Speakers

General expertise

Elena Lazovik (TNO)

User communities

- Thomas Geenen (ECMWF)
- DP for Marcella Orwick Rydmark (UIO)
- Tomáš Karásek (IT4I)

Supercomputing centres

- Pekka Manninen (CSC)
- Thomas Eickermann (JSC)
- Tomáš Karásek (IT4I)
- Thomas Geenen (ECMWF)

2023 Göteborg

Digital Twins: Concepts and Architectures

Elena Lazovik (TNO), 2023-03-21

Paving the Path for Digital Twins on HPC

What is a Digital Twin

 "The digital twin is the virtual representation of a physical object or system across its life-cycle. It uses real-time data and other sources to enable learning, reasoning, and dynamically recalibrating for improved decision making."

A digital twin is a digital replica that is accurate enough that it can be the basis for decisions given a specific purpose DATA

) Creates value by linking data, models & purpose) The replica is often connected by streams of data) The replica is supported by new IT

PURPOSE

2023 Göteborg

Gradation of Digital Twins

-) Digital model is synchronized so that the model state is up-to-date with that of the physical twin to provide real-time monitoring capabilities

Additional reasoning logic enables the digital twin to do calculations that give insights underpinning predictive power and supporting decision-making

Closing the control loop, the digital twin is integrated into the physical twin so that decision-support is provided in an engineered system

Benefits and shortcomings of DT

- Digital Twin Benefits
 - Reduces CAPEX & OPEX enormously with a FIRST-TIME-RIGHT implementation and Physical Twin lifecycle management
- Reduced time-to-market of product, process, or production system Digital Twin Short-comings
 - It is expensive: mostly custom-built & currently silo-ed
 - It does not evolve well with the physical world: Software **Development & Lifecycle (SDLC) Management is barely** considered or ignored

2023 Göteborg

The hardest part of DT is not a model

"Hidden Technical Debt in Machine Learning Systems", Google NIPS 2015

by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Custom vs. Generic DT

- > Generic IT for Digital Twin
 - > Affordable solution with quick time-to-solution

-) Lifecycle management IT for Digital Twin
 - > Keeping up with our evolving physical world

2023 Göteborg

BioDT Digital Twin effort

Digital Twin Effort

2023 Göteborg

Digital Twin platform

• HPC support

- Different types of infrastructure for different models: CPU, GPU, TPU.
- Offloading of local models to HPC cluster
- Management of different types of data
- Support of models written in very varied languages (R, Python, Java, Rust, Scala, Akka, Erlang, etc.)
- Data ingestion from hundreds and thousands of data sources
- Different types of visualization

Nature

Behaviour

Data

Technology Architecture BIODT Platform

2023 Göteborg

Paving the Path for Digital Twins on HPC Destination Earth: A Digital Twin on a Global Scale

Thomas Geenen (ECMWF), 2023-03-21

2023 Göteborg

EU's Destination Earth (DestinE) initiative

Towards a Digital Twin Earth

A European Green Deal (2019)

A European strategy for data (2020)

Shaping Europe's digital future (2020)

Key elements

- Digital Twin Engine
- Digital Twins
- Data lake
- Core platform

Funded by the European Union

ECMWF's role in EU's DestinE initiative

Towards a Digital Twin Earth

ECMWF is responsible for the delivery of:

- decadal)

The DestinE **Digital Twin Engine** (DTE): common approach for a unified orchestration of Earth-system simulations and their fusion with observations, requiring **large-scale HPC** and data handling resources

Weather-induced and Geophysical **Extremes Digital Twin**: capabilities and services for the assessment and prediction of environmental extremes (a few days ahead)

<u>Climate</u> Change Adaptation **<u>Digital Twin</u>**: capabilities and services in support of climate change adaptation policies and mitigation scenario testing (multi-

Funded by the European Union

DestinE's Digital Twins: Quality + Impacts + Interaction

- 1. Better simulations based on more realistic models
- 2. Better ways of combining all observed and simulated information from entire Earth system = physical + food/water/energy/health supporting action scenarios
- 3. Interactive and configurable access to all data, models and workflows

On-demand Extremes DT (procured)

Flexible and scalable workflows for the monitoring and short-range prediction of extremes at sub-km scales, that are configurable and operable on demand; builds on the ACCORD prediction system and selected impact models

Meteo-France led consortium

Use cases in DT Extremes (on demand)

Hydrology / Extreme Flood Events

Workflows for flood modelling in BG, CZ, DK, FI, FR, IE, IS, SE, SK

Air quality

Two air quality extremes:

- Cold inversion in Carpathian region, Jan 2017
- Ozone/heat in Benelux, Summer 2018

) (GeoSphere Austria

Renewable Energy

- North sea storms
- Ramping events (storms, fronts, ...)
- Solar energy

Climate DT

multi-decadal, global, storm/eddy-resolving numerical Earth-system simulation capability with the timely delivery of climate <u>information</u> for policy adaptation; observation based assessment framework; use cases for impactsectors such as water, energy, food or health

CSC led consortium

Today's global climate models

Storm & eddy resolving simulations

Collocated weather, climate and impactsector information on scales where impacts of climate change and extreme events are felt

Use cases in DT Climate

- Fire indices for Europe
- Fire spread models in Finland
- Burnt area, CO2 emissions (Finland)

ILMATIETEEN LAITOS

- Wind resources globally (onshore, offshore)
 - Wind turbine vulnerability under extremes and icing

- Future freshwater resources
- Future flood/drought
- Focus: Germany

- Extreme event statistics
- Event catalogue

Deutscher Wetterdienst Wetter und Klima aus einer Hand

HELMHOLTZ Centre for Environmental Research

- Spatio-temporal variability of heat waves
- Human thermal comfort indicators

Different types of Integration

Full Integration mode

Directly integrated in the DestinE simulation and data handling system

Coupling mode

Integrated in a workflow where Digital Twins have their own simulation and data fusion tasks interfacing with DestinE

Integration continuum

Use DTE Workflow management, HPC and data handling software infrastructures

Compatible with DTE Workflow management, HPC and data handling software infrastructures

Post-processing mode

Integrated as data postprocessing application without own Earth-system simulation

Weak DTE coupling independent Workflow management, data management support

DTE in the background implicit data handling software infrastructure use By the end user from the DESP

2023 Göteborg

Digital Twins for Biodiversity

Acknowledgement:

- Jürgen Groeneveld (UFZ)

Dirk Pleiter (KTH), 2023-03-21

Paving the Path for Digital Twins on HPC

 Original slides from Marcella Orwick Rydmark (UIO) • Further input from Franziska Taubert, Volker Grimm,

Pollinators - Background

- Pollinators are omnipresent in ecosystems Critical for food security and plant
- biodiversity
- Climate and and environmental changes are accelerating the decline of pollinators The full risks associated to their decline are
- not fully understood
- Focus here: Honey bees

2023 Göteborg

What are the main stressors of honeybees?

Varroa: http://www.bienenaktuell.com/ Pestizide: http://georgiaag.com/ Monokultur: http://www.taz.de/ Truck:http://georgiabees.blogspot.de/

- Varroa (mite)
- Diseases
- Pesticides
- Modern agricultural practices that lead to forage gaps
- Beekeeping practices

It is not practically possible to test multiple stressors with experiments

BEEHAVE simulator

- BEEHAVE is a computer model to simulate the development of a honeybee colony and its nectar and pollen foraging behavior in different landscapes
- The model continues being expanded by different modules

COLONY AND POPULATION DYNAMICS

FORAGING

LANDSCAPE AND FORAGE AVAILABILITY

VARROA AND **BEEKEEPING**

BEEHAVE as part of a Digital Twin

Why HPC?

- running the model for the entirety of Germany)
- Comprehensive uncertainty and sensitivity analysis

What turns **BEEHAVE** into a Digital Twin

- Automation of data flow
- followed by new model iteration)

 Access to fast computing and comprehensive data expertise is essential Increasing the model's spatial extent, while keeping the resolution (eg.

• Dynamic model updating (e.g. feeding in updated environmental data,

Automated model uncertainty analysis (comparisons with real-life data)

2023 Göteborg

Tentative workflow

New data needed

2023 Göteborg

Envisaged outputs: risks maps

- Interactive and/or static maps where the color would code the risk of forage gaps and hence bee colony failure
- This will indicate where certain changes in land use could and should improve the forage supply situation for pollinators

2023 Göteborg

Potential end-users

- Academia

- Beekeepers (institutes, associations) • Farmers (land management) Policy developers (land use)

2023 Göteborg

Product Digital Twin within Siemens Plants

Tomáš Karásek (IT4I), 2023-03-21

Paving the Path for Digital Twins on HPC

2023 Göteborg

Digital Twin of the electric motor?

Complex nonlinear multiphysical problem – electric motor

- Electric fields
- Electromagnetism
- Heat transfer
 - heat generated by magnetism
 - cooling system
- Structural Mechanics
 - structural integrity
 - $\circ\,$ vibration from motion
 - high speed motors
 - influenced by electromagnetism
- Active cooling system
 - $\circ~$ fluid flow
- Acoustic
 - generated by fluid flow
 - generated by electromagnetism
 - generated by vibrations

Settings for **Steady State** simulation **OpenFOAM solver:**

- Incompressible simpleFoam with MRF Zone Moving **Reference Frame**
- Simulation initialization by potentialFoam solver
- kOmega-SST turbulence model
- 2000 time step iterations to reach the convergence
- Solved for CW and CCW directions
- Solution time for one solver run on IT4I Salomon supercomputer:
 - 960 cores 2 hours (price 90 €)
 - 1200 cores 1,6 hour (price 90 €)
- Standard workstation with 30 Cores ~ 64 hours

Settings for **Transient** simulation **OpenFOAM solver:**

- Incompressible pimpleDyMFoam with dynamic solid mesh motion
- Simulation initialization by steady-state results
- Solid mesh motion fan rotation with 994 RPM
- kOmega-SST turbulence model
- Constant time step 2° per time step -> 3.353 E-04 [sec]
- 8 full fan rotations were calculated
- Solution time for one solver run on IT4I Salomon supercomputer:
 - 960 cores 43 hours (price 1920 €)
 - 1200 cores 34 hour (price 1920 €)
- Standard workstation with 30 Cores ~ 1500 hours (2 months)

CW

2023 Göteborg

Verification by measurements

Flow Rate [m³/min]

Measurem 46.90

Ventilation losses [W]

	C	N	CCW			
ent	CFD Transient	CFD STEADY	CFD Transient	CFD STEADY		
	47.58	40.70	46.40	40.00		

	CW				CCW					
Measurement	CFD Transient		CF STE	D ADY	CF Trans	-D sient	CFD STEADY			
560	578 625 477 .		477.3	518	566	619.3	471.8	510		
Density	1.127	1.225	1.127	1.225	1.127	1.225	1.127	1.225		

results depend on the density 1.127 [kg/m³] -> smaller density -> smaller torque moment

2023 Göteborg

Verification by measurements

			CM	V	CC	w			CV	V	CC	W			CV	V	CCV	N
		Measure	CFD	CFD	CFD	CFD	nosition	Measure	CFD	CFD	CFD	CFD	n o citi o n	Measure	CFD	CFD	CFD	CFD
	position	ment	Transient	STEADY	Transient	STEADY	position	ment	Transient	STEADY	Transient	STEADY	position	ment	Transient	STEADY	Transient	STEADY
	1	15.53	15.45	14.64	19.04	14.04	15	10.23	12.70	11.79	14.63	10.46	29	8.51	11.48	10.75	13.42	9.07
	2	18.91	19.13	17.20	17.13	12.73	16	13.18	14.60	13.23	12.71	9.57	30	11.33	13.18	11.59	11.28	8.18
	3	18.21	20.29	17.78	15.33	12.46	17	12.46	14.83	13.32	11.31	9.42	31	10.88	13.14	11.61	10.07	8.25
TOP SIDE	4	17.99	20.54	19.42	13.67	11.14	18	12.23	15.21	14.63	10.88	8.57	32	10.19	13.36	12.90	9.58	7.50
	5	16.65	19.18	19.58	10.33	8.27	19	12.11	14.15	14.77	8.17	5.65	33	10.12	12.24	12.92	7.16	4.48
	6	19.61	20.28	18.87	4.79	2.82	20	12.45	15.07	14.14	4.23	1.85	34	10.63	12.98	12.26	3.95	1.38
	7	12.47	11.40	11.37	6.01	5.72	21	8.85	8.57	8.64	5.14	4.75	35	7.44	7.24	7.19	4.01	3.75
	8	9.68	6.68	6.72	11.71	11.54	22	7.08	5.05	5.04	8.95	8.81	36	5.93	4.02	3.90	7.30	7.29
	9	9.18	9.40	8.37	21.33	20.52	23	5.82	5.58	5.25	15.94	15.31	37	4.91	4.36	4.00	13.83	13.27
	10	15.39	9.23	7.31	20.03	19.95	24	9.27	8.06	6.43	14.75	14.92	38	7.82	7.28	5.70	12.91	13.04
	11	16.49	10.96	7.56	20.63	19.33	25	10.58	8.90	6.36	15.27	14.71	39	9.18	7.86	5.72	13.58	13.04
	12	18.22	16.33	11.37	20.21	17.98	26	12.75	12.37	8.63	14.71	13.64	40	10.48	11.20	7.72	13.19	11.97
	13	19.77	18.76	13.12	18.86	17.85	27	14.35	13.90	9.86	14.23	13.83	41	12.11	12.66	8.77	12.88	12.23
	14	19.42	19.39	14.64	11.47	12.85	28	14.52	14.42	10.78	9.51	10.59	42	12.28	13.36	9.56	8.49	9.64
Averege		16.25	15.50	13.42	15.04	13.37		11.13	11.67	10.20	11.46	10.15		9.42	10.31	8.90	10.12	8.79

2023 Göteborg

Use of virtual model: design modifications

RING Geometry modifications

	RING 01	RING 02	RING 03	RING 04
A1	0.361	0.361	0.365	0.359
A2	0.005	0.005	0.005	0.005
A3	0.1	0.075	0.1	0.1
A4	0.99	0.99	0.99	0.99

2023 Göteborg

Discussion and Q&A

Additional panel member: - Pekka Manninen (CSC) - Thomas Eickermann (JSC)

Dirk Pleiter, 2023-03-21

Paving the Path for Digital Twins on HPC